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ABSTRACT
In Twitter-like social networking services, the “@” symbol can be
used with the tweet to mention users whom the user wants to alert
regarding the message. An automatic suggestion to the user of
a small list of candidate names can improve communication effi-
ciency. Previous work usually used several most recent tweets or
randomly select historical tweets to make an inference about this
preferred list of names. However, because there are too many his-
torical tweets by users and a wide variety of content types, the use
of several tweets cannot guarantee the desired results. In this work,
we propose the use of a novel cooperative multi-agent approach
to mention recommendation, which incorporates dozens more his-
torical tweets than earlier approaches. The proposed method can
effectively select a small set of historical tweets and cooperatively
extract relevant indicator tweets from both the user and mentioned
users. Experimental results demonstrate that the proposed method
outperforms state-of-the-art methods.

CCS CONCEPTS
• Information systems→Collaborative search; •Human-centered
computing → Social recommendation.
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1 INTRODUCTION
Twitter speaks its own language and one of its well-known aspects
is the “@mention” function. A mention is a tweet containing the
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Figure 1: Examples of historical tweets posted by users and
their mentioned users. To make a correct mention recom-
mendation for the tweet “Suddenly remembered the name
of that song,” the key is to find indicator tweets (in blue)
from the earlier tweet interactions of dozens of historical
tweets.

“@” symbol followed by a Twitter handle1. Inserting mentions into
a tweet serves to grab the attention of corresponding users. The
mention utility allows users to spread information far beyond their
own neighborhoods and improve its visibility by making it available
to an appropriate set of users. Moreover, as mentions are listed in a
separate tab, they attract greater attention than regular posts [25].
According to a 2018 Twitter statistic2, the average Twitter user
has 707 followers. Hence, it would be beneficial for Twitter to
automatically recommend to users a small number of candidates
when they want to mention others in a certain tweet.

The task of mention recommendation is to predict who should be
mentioned for a given new tweet. Currently, the solution adopted
by social media platforms like Twitter, Weibo, and Facebook is to
provide mention suggestions after a user inputs the mention symbol
“@.” The suggestions given by these services are usually based ei-
ther on the completion of partial inputs or users’ mention histories,
which tend to be less than ideal [32]. Recently, many researchers
have used various Twitter information sources to facilitate recom-
mendations, including the user’s own tweet history, his/her retweet
history, and the social relations between users [1, 15, 29, 39]. Gong
et al. [8] take into consideration the content of the tweet and the
1https://help.twitter.com/en/using-twitter/types-of-tweets
2https://www.websitehostingrating.com/twitter-statistics/
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histories of candidate users via a translation process that maps the
content of tweets to usernames. Huang et al. [10] use a memory net-
work to incorporate the content of a tweet, the history of its author,
and the interests of candidate users. In addition, additional visual
information has been incorporated into a cross-attention memory
network to perform the mention recommendation task [18, 33]. All
these methods aim to measure the similarity between the interests
of candidate users and the given tweet.

Although previous approaches incorporated various types of
information in the modeling of mention behaviors have achieved
great success, they still have difficulty in dealing with a large num-
ber of historical user tweets. Because a user may receive too many
status updated from his/her followers and many tweets do not nec-
essarily reflect the information needs of users [1, 22]. Thus, the use
of several recent tweets or the random selection of a few tweets
will miss important information and introduce a lot of irrelevant
information, which can negatively impact the mention recommen-
dation. As shown in Figure 1, both the tweet histories of a user and
those of candidate mentioned users are useful in making a mention
recommendation for the tweet, “Suddenly remembered the name of
that song.” The key is to find the indicator tweets (in blue) among all
the earlier tweet interactions in the tweet histories of the user and
candidate mentioned users. Because of the complicated relationship
of communications among users [27], it is difficult to cooperatively
select relevant tweets from dozens of historical tweets. Previous
approaches take just a few historical tweets into consideration. For
instance, Huang et al. [10] restricted the capacity of their model to
five tweets randomly selected from the user’s tweet history. These
kinds of methods limit the capacity of modeling mention behaviors.

To tackle the above challenges, in this work, we propose the use
of a novel cooperative multi-agent approach to mention recommen-
dation. The proposed method uses two policy gradient agents to
simultaneously select a small set of historical tweets from the user
and candidate mentioned users and evaluates the utility of joint
actions based on the classification accuracy. In cooperative settings,
joint selection typically generates only global rewards, which make
it difficult to determine the contribution of each selector to the
group’s success [5]. To overcome this problem, the proposed model
employs novel cooperative reverse operation multi-agent (CROMA)
policy gradients. The CROMA takes an actor-critic [12] approach
characterized by differentiated advantages, in which each actor (i.e.,
user tweet selector or candidate-mentioned-user tweet selector) is
trained by following its own unique gradient estimated by a critic.
To do so, we adopt a centralized training framework with decen-
tralized execution, in which the critic is only used during learning,
and the actor is only needed during execution. In addition, we use a
reverse operation to obtain an advantage for each agent. We provide
each agent with a shaped reward that compares the current global
reward to the reward received when the agent takes a reverse action
(operation). Experimental results show that the proposed method
can perform much better than existing state-of-the-art methods.

The main contributions of this work can be summarized as fol-
lows:

• We propose a method for considering a large number of
historical tweets in the mention recommendation task. The

use of more historical tweets enables better modeling of user
mention behaviors and provides more valuable information.
• To achieve this task, our approach utilizes a novel multi-
agent reinforcement learning method, CROMA, in which
the user tweet selector and candidate-mentioned-user tweet
selector cooperatively extract indicator content.
• To evaluate the proposed approach, we constructed a dataset
containing 50 historical tweets per user 3. Experimental re-
sults from the benchmark test indicate that the performance
of CROMA is significantly better than those of other baseline
approaches.

2 RELATEDWORK AND BACKGROUND
This work is related to two research threads: social media user
recommendation and reinforcement learning (RL). In this section,
we first summarize related work and then give a brief description
of the differences between existing approaches and our own. Then,
we give some background on single-agent RL, including the deep
Q-Network, policy gradient, and actor-critic approaches. We also
discuss the settings used in multi-agent RL and the roles of reward
shaping in multi-agent settings.

2.1 Mention Recommendation
As Twitter has grown into one of the most popular microblogging
services, much research has focused on the analysis of the per-
sonal interests of users and building corresponding recommender
systems, such as content recommendation [1, 13], community rec-
ommendation [17, 38], hashtag recommendation [2, 7, 14], and
mention recommendation [8, 10, 31].

The mention recommendation task has been studied from vari-
ous perspectives. Wang et al. [31] formulated this task as a ranking
problem and adopted features including the user interest match,
content-dependent user relationship, and user influence to make
a recommendation according to the diffusion-based relevance of
newly defined information. Li et al. [15] considered mention recom-
mendation to be a probabilistic problem and utilized a probabilistic
factor graph model to identify the user having the maximal ca-
pability and potential to facilitate tweet diffusion. Tang et al. [29]
employed a ranking support vector machine (SVM) model to recom-
mend the top K appropriate users to mention. The above methods
require the extraction of a variety of features, including content-,
social-, location- and time-based features. Gong et al. [8] proposed
a topical translation model that incorporates the content of tweets
and users’ post histories to deal with this problem.

Recently, deep-learning-based methods have opened up new pos-
sibilities for mention recommendation. Huang et al. [10] adopted
a memory network with a hierarchical attention mechanism for
this task. Ma et al. [18], Wang et al. [33] proposed the incorpora-
tion of visual and textual information by a cross-attention memory
network to perform mention recommendation. However, these
methods only consider short-term user posting histories or a ran-
dom sample of a few historical tweets, which are insufficient for
modeling user interest. In this work, we use a novel cooperative
multi-agent method to model long-term user posting histories and
effectively select relevant historical tweets.
3https://github.com/mritma/CROMA



2.2 Single-Agent Reinforcement Learning
In a single-agent, fully observable RL setting [26], an agent observes
the current state st ∈ S in discrete time steps t , chooses an action
at ∈ A according to a potentially stochastic policy π , observes a
reward signal rt , and transitions to a new state st+1. The objective
in optimizing the policy parameters, θ , is to maximize the expected
reward by performing actions drawn from the policy π .

Q-Learning andDeepQ-Networks. In particular environments,
the Q-learning technique [34] estimates the Q-values (or action-
values)Qπ (s,a), which is a scalar used to estimate the expected sum
of the gamma-discounted rewards that will accrue by taking action
a in state s by following policy π as Qπ (s,a) = E[R |st = s,at = a].
This Q function can be rewritten by applying the Bellman equa-
tion to the immediate reward and the Q-values of the next state
and action as Qπ (s,a) = Es ′[r (s,a) + γEa′∈π [Q

π (s ′,a′)]]. Deep
Q-Networks [19] extend standard Q-learning by the use of a deep
neural network as a Q-value function approximator and minimizing
the following loss function:

L = Es,a,r,s ′[(Q
∗(s,a |θ ) − y)2], (1)

where y = rt +γ maxa′ Q̄(s ′,a′ |θ̄ ) is the update target given by the
target network Q̄ , whose parameters θ̄ are periodically updated
with the most recent θ value to stabilize the learning [20].

Policy Gradient and Actor-Critic Algorithms. Policy gradi-
ent methods, another type of RL technique, rely upon optimizing pa-
rameterized policies to maximize the expected return J (θ ) = Eπ [R]
by gradient ascent. These methods do not suffer from many of
the problems that plague Q-learning methods, such as the lack
of guaranteed value function, the intractability issue associated
with uncertain state information, and the complexity arising from
continuous states actions. A classic example is the REINFORCE
algorithm [35], in which the gradient is as follows:

∇J (θ ) = Eπ [
T∑
t=0
∇θ [logπθ (at |st ;θ )R]]. (2)

Alternatively, using the Q function as a critic for estimating
rewards has led to a class of actor-critic algorithms, e.g., that use
the temporal difference (TD) error rt + γV (st+1 −V (st )) [26].

2.3 Multi-Agent Reinforcement Learning
In this work, we consider multi-agent domains that are fully co-
operative and partially observable, all of which are attempting to
maximize the discounted sum of the joint rewards and no single
agent can observe the state of the environment. Multi-agent RL can
be described as an extension of Markov decision processes (MDPs).
The MDPs for N agents can be described as a stochastic game G,
represented as a tuple G = ⟨N , S,A, {Ri }i ∈N ,T⟩, where S is the
set of states; A is the collection of action sets, with ai being i-th
agent’s action; T is the state transition function: T : S×A→ S ; and
{Ri }i ∈N is the set of reward functions. By their joint actions, each
agent receives a reward for judging its own action ri : S ×A→ R,
and aims to maximize its total expected return Ri =

∑T
l=0 γ

l rt+l ,
where γ is the discount factor and T is the total number of time
steps.

Multi-Agent Using Team Rewards. The use of Q-Networks
has been extended to cooperative multi-agent settings, in which

each agent learns its own Q-function that is conditional only on
the state and its own action. This represents the simplest and most
popular approach to multi-agent RL. Independent Q-learning (IQL)
is implemented by basing the optimized action-observation history
of each agent on the same team rewards [28]. IQL is useful because
it avoids the scalability problems associated with trying to learn a
joint Q-function that relies on a joint action space A, which grows
exponentially with the number of agents. IQL is also naturally
suited to partially observable settings, since, by construction, it
learns decentralized policies in which each agent’s action is based
only on its own observations.

Multi-Agent Using Shaped Rewards. Although IQL is very
successful, it introduces a key problem: the environment becomes
nonstationary from the point of view of each agent, as it contains
other agents who are themselves learning, which rules out any
convergence guarantees [6]. In addition, it is difficult to determine
the contribution of each agent to the group’s success [5]. Hence, a
shaped reward must be allocated to each agent according to its own
contribution to the team rewards. The idea is inspired by difference
rewards [4, 30], in which each agent learns from a shaped reward
that compares the global reward to the reward to that received
when that agent’s action is replaced with a default action. However,
access to a simulator or estimated reward function is required, and
in general it is unclear how to choose the default action.

Therefore, a core issue in multi-agent learning is how to design
a reward for each agent, because joint actions typically generate
only global rewards. The actions of all the agents contribute to that
global reward, which can make the gradient of each agent very
noisy [5]. In the next section, we describe in detail our proposed
novel multi-agent RL technique for tackling the above problems.

3 APPROACH
Given a query tweet tq issued by an author v , we must recommend
one or several users u from a list of candidate mentioned users
U according to their long-term historical tweets H . Because there
are too many historical user tweets and variety of content types,
we must extract many of the relevant indicator tweets from the
historical tweets of the user and candidate mentioned users.

Figure 2 shows the architecture of our proposed model, which
has three components. First, we use a tweet encoder to represent
tweets, and historical tweets are encoded using a hierarchical atten-
tion model. Second, we propose the use of CROMA policy gradients
to select relevant indicator tweets, which adopt a centralized train-
ing framework with decentralized execution in which a central-
ized critic and differentiated advantages are applied. Both the user
and candidate-mentioned-user tweet selectors are policy gradient
agents, which take the query tweet tq and historical tweets H as in-
puts and determine which historical tweets should be selected. The
selectors are trained by following the different gradients estimated
by the critic. The differentiated advantages are shaped rewards that
compare the current global reward to those received when each
agent’s action is replaced with a reverse action. Finally, we merge
the query-tweet representation and the features selected by agents,
and use a fully connected softmax layer for prediction.
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Figure 2: Architecture of the proposed model. At each time step t , the advantage Aet of selector e is given by comparing the
current global reward to the reward received when that agent’s action is replaced with an opposite action −aet .

3.1 Tweet Encoder
We denote the query tweet of the author as tq , historical tweets
of the author as Dv = {tv1 , t

v
2 , · · · , t

v
N }, and historical tweets of a

candidate mentioned user asDu = {tu1 , t
u
2 , · · · , t

u
N }, where N is the

number of historical tweets. We assume that each tweet consists of
a sequence of words ti = {w1,w2, · · · ,wM }, where ti ∈ D andM is
the length of a tweet. We use a tweet encoder similar with Huang
et al. [10] to obtain query-tweet representations and historical tweet
representations.
Query-Tweet Representation

Weuse a simple but effectivemethod to represent the query tweet
tq , in which a tweet consists of a bag of words {w1,w2, · · · ,wM },
where each word is a one-hot vector. We use a randomly initialized
word embedding matrix A ∈ Rd×|V | to store the representations
of all words, where d is the embedding dimension and |V | is the
size of the vocabulary. Thus, each wordwi in tq is embedded in a
continuous space. We then sum these embedding vectors to obtain
a representation of the query tweet: tq =

∑
i Awi . The query tweet

representation tq is also used to obtain historical tweet representa-
tions.
Historical Tweet Representations

Historical tweets are a set of texts posted by a user, with each
tweet consisting of a bag of words. Because each tweet has different
importance to the query tweet and not all the words in tweets are
equally important, we introduce a hierarchical-attention method
to model historical tweets on both word and tweet level. Taking
the author of a query tweet as an example, the historical tweet
representations are formulated as follows.

Word-Level Attention. For each tweet ti ∈ D, we obtain a
word embedding matrix representationW = [Aw1,Aw2, · · · ,AwM ]

by looking up the word vocabulary table A. Then, we compute

the attention weights through the inner product between word
representation Aw j ∈W and query tweet representation tq with a
softmax function as follows:

Pri j =
exp(tTq Aw j )∑M

m=1 exp(tTq Awm )
, (3)

where Pr is the probability over the input position.
Then, we sum all the word representations using the word-level

attention weights to obtain the tweet-level representation:

hi =
∑
j
Pri jAw j (4)

where hi is the embedding of the i-th tweet ti ∈ D. We use a
simplified function to represent the word-level attention: hi =
WAtt(ti , tp ).

Using the above procedure, all historical tweets are transformed
into vectors of the same dimension, which are then used to model
the user long-term mention behaviors.

Tweet-Level Attention. In the next section, we introducemeth-
ods for selecting the relevant tweet history set. For simplicity, we
first use all of the user tweet histories to match the query tweet,
although this brings a lot of irrelevant information (which could
negatively impact the mention-recommendation outcome). To ag-
gregate the tweet interests, we use a tweet-level attention mecha-
nism to allocate different weights to each historical tweet. Given
the embedding set of tweets H = {h1,h2, · · · ,hN }, the interest
representation of the historical tweets is the weighted sum of these



embedded tweets as follows:
mhi = tanh (Wotq +Whhi )

Prhi =
exp(WT

mhmhi )∑N
n=1 exp (WT

mhmhn )

tp =
N∑
i
Prhihi ,

(5)

where tp is the representation of the user’s historical tweets.Wo ,
Wh , andWmh are the parameters of the attention functions. Prhi is
the weight divided by the input tweets, which can be interpreted
as the degree of importance of a particular tweet in the tweet set.
We use a simplified function to represent tweet-level attention:
tvp = TAtt(H

v , tq ), tup = TAtt(Hu , tq ).
As described above, we obtain the author’s query-tweet rep-

resentation tq , the author’s tweet-history representation tvp , and
the candidate-mentioned-user’s tweet-history representation tup .
Inspired by [10], we use multi-hop function to aggregate them and
obtain the output, as follows:

O1 = tq +TAtt(H
v , tq ) +TAtt(H

u , tq )

Ok = Ok−1 +TAtt(H
v ,Ok−1) +TAtt(H

u ,Ok−1),
(6)

where k ∈ 1, 2, · · · ,K is the number of hops, and OK is the final
output for prediction. We find that using a multi-hop mechanism
in tweet-level attention refines the tweet-history representation to
improve the matching performance.

3.2 Tweet Selectors with Independent
Q-learning

When we wish to select a relevant query-tweet subset from histori-
cal tweets, a key challenge arises when we encounter the diverse
content of posts and their multi-faceted points of interest. In ad-
dition, the nature of discrete selection decisions makes losses no
longer differentiable. To overcome this problem, we introduce a
multi-agent actor-critic method, independent Q-learning (IQL), to
select a relevant query-tweet subset for the user and candidate
mentioned users.

A certain user’s historical tweets H correspond to the sequential
inputs of one episode. For each user selector, at each step t ∈ T ,
the agent chooses an action at (selecting the current tweet or not)
after observing the state st . When all of the selections are made, the
matching predictor will give a delayed reward to update the param-
eters of agent θa . The goal is to learn a policy πθa that, given an ob-
served state st , estimates a distribution for the next action at , which
is denoted by πθa (at |st ). The environment is determined by the
initial state s1 and transition function st+1 = f (st ,at ). We consider
the agent to use the standard reinforcement learning framework, in
which the agent participates in a Markov decision process (MDP).
Then, the probability of an action sequence a1:T in an episode can
be expressed as follows:

π (a1:T ) =
T∏
t=1

π (at |st ), st+1 = f (st ,at ). (7)

At the end of the episode, the delayed reward r provided by the
environment is used to optimize θa such that the agent can adopt a
better policy.

Next, we introduce several key points with respect to the agent,
including the state representation st , the action at , and the reward
function. The historical tweet selectors of the author and candidate
mentioned users have the same structure.

State representation. Assume that we have obtained tweet
representations by the tweet encoder. At step t , the model has
obtained t historical tweets as inputs, which are denoted as H1:t .
Given H1:t , the policy gradient agent could make the following ob-
servations: the current post representation ht , the indicator post set
Hindi = [ĥ1, ĥ2, ...], and the irrelevant post set Hir r e = [ȟ1, ȟ2, ...].
The notations ĥ and ȟ will be defined in the action step. Note that
at the initial time, Hindi and Hir r e are empty sets, and we use zero
vectors to initialize these two sets. We thereby formulate the agent’s
state st as follows:

st = [tq ⊗ ht ⊗ OK ⊗ avд(Hindi ) ⊗ avд(Hir r e )], (8)

where avд indicates the average pooling operation and ⊗ the con-
catenation operation.

Action. By sampling from the multinomial distribution, the
agent takes an action at at step t using policy at ∼ π (st ,at ;θa ). We
define action at ∈ {1, 0} to indicate whether the agent will select
the current tweet ht . Therefore, we can adopt a logistic function to
sample actions from the policy function as follows:

π (at |st ;θa ) = Pr (at |st )

= at ∗ σ (MLP(st ))

+ (1 − at ) ∗ (1 − σ (MLP(st ))),

(9)

where MLP represents the multilayer perceptron used to map the
state st to a scalar, and σ (·) is the sigmoid function. If the agent
takes an action to select the tweet (at = 1), then the hidden state
ht will be rewritten as ĥ and appended in Hindi . Otherwise, it will
be rewritten as ȟ and appended in Hir r e .

Reward function. After executing a series of actions, the agent
will construct a query-tweet-indicator representation setHindi . We
set the reward to be the likelihood of ground truth after finishing
all the selections made for the i-th user. In addition, to encourage
the model to delete more tweets, we include a regularization factor
to limit the number of selected posts as follows:

ri = Pr (yi |Hindi ;θd ) − λT ′/T , (10)

where T ′ refers to the number of selected tweets and λ refers to a
hyperparameter used to balance the reward. By setting the reward
to be the likelihood of ground truth, we capture the intuition that
optimal selections will increase the probability of ground truth.
Therefore, by interacting with the classifier via rewards, the agent
is incentivized to select optimal tweets from H for training a better
classifier.

3.3 Cooperative Multi-Agent Selecting
Algorithm

Because of the complicated interaction that characterizes the com-
munication of users [27], we must jointly consider the user and can-
didate mentioned users to select relevant historical tweets. Hence,
the policy gradient agents should not be independent of each other.
We propose the use of novel cooperative multi-agent reinforcement



learning (CROMA) to select relevant tweets from the tweet histories
of both the user and candidate mentioned users.
Centralized Critic

At each step t in one episode, we obtain a subset containing the
selected features for predicting the mention action. The selected
features of the user and candidate mentioned users are denoted by
Hv
init andH

u
init , respectively. Then the tweet feature representation

function 6 can be rewritten as follows:
Ot

1 = tq +TAtt(H
v
init , tq ) +TAtt(H

u
init , tq )

Ot
k = O

t
k−1 +TAtt(H

v
init ,O

t
k−1) +TAtt(H

u
init ,O

t
k−1),

(11)

where k and t refers to the number of iterations and time steps,
respectively.

The matching problem is a universal binary classification prob-
lem. As such, we process this representation using a dropout oper-
ation for two fully connected layers (i.e., MLP). The output of the
last layer is followed by a sigmoid non-linear layer that predicts
the probability distribution for the two classes:

Pr (yt = ŷ |O
t
K ;θd ) = ŷσ (Ot

K ) + (1 − ŷ)(1 − σ (O
t
K )), (12)

where ŷt represents the prediction probabilities at time step t using
Hv
init and H

u
init . To encourage the selector to take better actions,

we can relate the reward to the likelihood of ground truth Pr (y = ŷ).
A simple way to do so is to use the actor-critic algorithm, which
applies the change in Pr (y = ŷ) after updating its sets with the
newly chosen examples as the unified TD error, as reported in [36]:

rt = Pr (yt+1 = ŷ |O
t+1
K ) − Pr (yt = ŷ |O

t
K )

Lt (θc ) = [rt + γQ(Ht+1
init ,Πt+1, at+1) −Q

′(Ht
init ,Πt , at )]2,

(13)

where Ht
init = Hv

init ⊗H
u
init ,Π = πv ⊗ πu ,, and a = av ⊗ au . ⊗ is

the concatenation operation. However, using the same advantages
makes it difficult to identify the contribution of each selector. Hence,
differentiating these advantages poses a key challenge.
Differentiated Advantages Using Reverse Operation

In fact, a centralized critic can be used to implement difference
rewards in our CROMA setting. Although CROMA learns a central-
ized critic, which estimatesQ-values for joint action a depending on
the central state Ht

init , we can attribute a particular advantage to
each agent by comparing the global reward to the reward assigned
when an agent takes a reverse action. Intuitively, this mechanism
can give a positive reward when the Q-value of a gold action sub-
tracts that of a reverse action. Formally, for each selector e ∈ {u,v},
we can then compute an advantage function that compares the
Q-value of the current action ae to a misoperation baseline that
takes a reverse action −ae , while keeping fixed the other agent’s
action a−e :

Ae (Ht
init ,Πt , at ) =Q(Ht

init ,Πt , (a
e
t ,a
−e
t ))

−Q(Ht
init ,Πt , (−a

e
t ,a
−e
t )).

(14)

Hence, Ae (Ht
init ,Πt , at ) computes a separate baseline for each

agent and a centralized critic to consider each advantage. Therefore,
the model can be optimized according to Algorithm 1.

3.4 Prediction
Based on the selected historical-tweet and query-tweet representa-
tions obtained from the above process, we introduce an MLP and

Algorithm 1 CROMA for Mention Recommendation

1: Randomly initialize critic network Q(S,π , a|θQ ) and two selec-
tors π (s |θeπ ) with weights θQ and θeπ .

2: Initialize target networks Q ′ and π ′ with weights θQ ′ ← θQ ,
θeπ ′ ← θeπ . Initialize replay buffer R

3: for episode = 1, M do
4: Receive initial observation state he1
5: for t = 1,T do
6: Select action aet = π (het |θ

e
π ) according to current policy

7: Execute action aet and observe the likelihood of ground
truth Pr(y = ŷu |Ot ) and observe the new state het+1

8: Execute action aet+1 and observe the likelihood of ground
truth Pr(y = ŷu |Ot+1), thereby obtain the reward rt =
Pr(y = ŷu |Ot+1) − Pr(y = ŷu |Ot )

9: Store transition (H t
init , at , rt ,H

t+1
init ) in R

10: Sample a random minibatch of N transitions
(H i

init , ai , ri ,H
i+1
init ) from R

11: Set zi = ri + γQ ′(H i+1
init ,Πi+1, ai+1)

12: Update critic by minimizing the loss:

L(θQ ) =
1
N

∑
i
[zi −Q(H

i
init ,Πi , ai |θQ )]2

13: Update selectors using differentiated advantages:

Ae (H ,Π, a) = Q(H ,Π, a) −Q(H ,Π, (−ae ,a−e ))

∇θ eπ J (θ
e
π ) = ∇θ eπ logπ (aet |h

e
t )A

e (H ,Π, a)

14: Update the target networks:

θQ ′ = τθQ + (1 − τ )θQ ′ ,θeπ ′ = τθ
e
π + (1 − τ )θ

e
π ′

15: end for
16: Update the mention classifier by minimizing the cross en-

tropy loss:

J (θC ) = −[y log ŷ + (1 − y) log(1 − ŷ)]

17: end for

a softmax layer to determine whether or not a certain candidate
mentioned user u should be recommended for the author’s “@”
action in the tweet tq . The feature representation is passed into the
full-connection hidden layer:

f = σ (WmOT
K + bm ), (15)

whereWm is the weight vector of the hidden layer, bm is the bias,
OT
K is the final representation obtained from the last hop and last

time step, and σ (·) is the non-linear activation function.
Finally, we use a softmax layer for our prediction:

p(y = ŷ | f ;θs ) =
exp (θ is )f∑
j exp (θ js f )

(16)

According to the scores output from the softmax layer, we can
list the top-ranked recommended users for the “@” action.



4 EXPERIMENTS
In this section, we first describe the datasets and then the baseline
methods we used, including a number of classic methods and a se-
ries of neural networks methods. Finally, we detail the configuration
of the proposed model.

Table 1: Statistics of the Constructed Dataset, where # repre-
sents the number of tokens in datasets.

# Central Users 2,801
# Query tweets 106,384
# Candidate Mentioned Users 11,086
# Historical Tweets per User 50
# Total Historical Tweets 694,350
# Avg.Query Tweets per Author 37.98
# Avg.Mentioned Users per Author 40.01

4.1 Datasets
To evaluate the effectiveness of our proposed model, we expanded
the existing dataset [10] from five tweets per user to 50 tweets per
user from Twitter, which is 10 times larger than before.

We used the dataset constructed in [10], which contains 3,150
central authors and a total of 133,267 query tweets with at least
one “@username.” However, in this dataset, each user contains
just five historical tweets. So, we expanded the dataset from five
historical tweets per user to 50, and removed users having less
than 50 historical tweets. Thus, we obtained 2,801 central authors
with mention behavior, and a total of 106,384 query tweets. The
number of mentioned users was 11,086. Finally, we crawled 50
historical tweets from each user, and collected 694,350 historical
tweets. From the statistics shown in Table 1, we can see that the
average number of query tweets per central author was 37.98, and
the average number of users that the central author mentioned was
40.01. For each query tweet, we treated the list of mentioned users
annotated by authors as the ground truth, and the user mention
history of each author as candidates. We split the dataset into
training, development, and testing sets in an 80/10/10 ratio.

We conducted experiments on the above datasets, and found
that the historical tweets selected by our model greatly improved
the performance of the mention recommendation task.

4.2 Comparison Methods
Next, as baselines for comparison, we applied several classic and
state-of-the-art methods, including feature-based and neural net-
works methods.
Feature-based methods. As reported in previous work [10, 18],
we also evaluated several classic feature-based methods on the
proposed dataset, including the following:

• NB: Naive Bayes [24] is implemented using bag-of-word
features transformed from the posting history.
• PMPR: The personalized mention probabilistic ranking sys-
tem (PMPR) is proposed in [15] to solve the mention recom-
mendation problem.

• CAR: The context-aware at recommendation (CAR) model
is a ranking support vector machine model proposed in [29]
to locate target users.

Neural network methods.We compared our model performance
with those of some neural network methods that use the tweet
histories of both authors and candidate mention users to identify
mention actions.
• LSTM: LSTM [9] is a general method for modeling text. We
used LSTM to model tweets and make predictions.
• Attention methods: We applied several recently proposed
attention methods to the task of mention recommendation,
including multi-level attention (MLAN) [37], co-attention
(CAN) [16], dual-attention (DAN) [23], and modality atten-
tion (MAN) [21] methods. These methods are designed to
model the relationship between objects from different per-
spectives.
• AU-HMNN: AU-HMNN is proposed in [10], which incor-
porates the textual information of query tweets and user
histories. This is a state-of-the-art approach to the mention
recommendation task.
• Independent Q-Learning: A strong baseline model uses
selectors with same structure, and unified advantages are
then generated to optimize the selectors [3].
• Random sampling: We also randomly sampled half of the
tweets from each user to train the baseline model.

4.3 Initialization and Hyperparameters
In this work, we first restrict the number of historical tweets to 50,
and then test the performance of different size of historical tweets.
The maximum length of each tweet is 32. The word embeddings
and other parameters related to the deep learning models by ran-
domly sampling from a standard normal distribution and a uniform
distribution in [-0.05, 0.05], respectively. We set the dimensionality
of the word embedding to 300 and the number of hops to 6. The
learning rate was set to 0.01, and the dropout rate was set to 0.2.
Each of selectors use a MLP with 50 hidden neurons.

Our model can be trained end-to-end using back propagation,
and we performed gradient-based optimization using the Adam
update rule [11], with a learning rate of 0.001.

5 RESULTS AND ANALYSIS
In this section, we detail the performances of the proposed and
baseline models, and present the results of a series of experiments,
which demonstrate the effectiveness of the proposed model from
different aspects.

5.1 Method Comparison
We compared the mention recommendation performance of the
proposed and baseline models in terms of four selected measures,
i.e., precision, recall, F1, and mean reciprocal rank (MRR). We also
used Hits@3 and Hits@5 to represent the percentage of correct
results recommended from the top N results. Table 2 shows a sum-
mary of our results. We can see that our proposed model (CROMA)
performs better than the other comparison methods.

In the table, Category I shows a comparison of the feature-based
methods, which use various features for training. We can see that



Table 2: Comparison results on the testing dataset. We divided the compared approaches into three categories based on differ-
ent mechanisms. Category I belongs to traditional machine learning methods. Category II is based on deep neural networks.
Category III includes different variants of our approach.

Method Precision Recall F-Score MRR Hits@3 Hits@5

I
NB, Pedregosa et al. 2011 [24] 51.42 50.37 50.89 63.09 67.09 78.73
PMPR, Li et al. 2011 [24] 58.10 57.39 57.74 69.85 73.42 86.36
CAR, Tang et al. 2015 [29] 59.74 58.62 59.17 70.57 74.68 87.34

II

LSTM, Hochreiter and Schmidhuber 1997 [9] 65.54 64.60 65.07 74.53 78.48 90.31
CAN, Lu et al. 2016 [16] 63.29 62.66 62.97 71.38 76.52 90.58
MLAN, Yu et al. 2017 [37] 60.16 59.53 59.84 71.37 77.22 91.14
DAN, Nam et al. 2017 [23] 73.42 72.78 73.10 80.94 82.28 91.37
MAN, Moon et al. 2018 [21] 68.35 67.72 68.03 75.18 77.22 88.61
AU-HMNN, Huang et al. 2017 [10] 74.23 73.05 73.64 81.16 83.54 92.41

III
Random Sampling 70.94 69.72 70.32 77.70 82.88 93.67
IQL, Tampuu et al. 2017 [28] 71.04 70.26 70.65 79.01 82.13 92.16
CROMA 74.55 74.09 74.32 81.85 86.36 95.00

Table 3: Comparison of different methods between adding
CROMA RL and without CROMA RL for F1, Hit@3, and
Hit@5 scores. Results annotated with * are obtained when
the number of historical tweets per user is restricted to five,
others are trained with all 50 historical tweets.

Method F1 Hit@3 Hit@5
w/o RL w/ RL w/o RL w/ RL w/o RL w/o RL * w/ RL

LSTM 65.07 +0.87 78.48 +1.33 90.31 -0.44 +0.95
CAN 62.97 +1.23 76.52 +1.83 90.58 -1.85 +0.39
MLAN 59.84 +1.05 77.22 +1.62 91.14 -0.81 +1.17
DAN 73.10 +0.71 82.28 +0.86 91.37 +1.04 +1.20
MAN 68.03 +0.94 77.22 +1.91 88.61 -6.33 +1.81
AU-HMNN 73.64 +0.68 83.54 +2.82 92.41 +0.00 +2.59

CAR performed better, which indicates that SVM-based methods
would be effective in mention recommendation task.

Category II shows the neural networks-based methods, which
avoid complicated feature design. LSTM is commonly used in text
modeling and can achieve an F1 score greater than 65%, which indi-
cates the power of neural networks-based methods for this task. We
also tested five more complex classification methods on our dataset,
including state-of-the-art methods for visual question-answering
tasks (CAN, DAN and MLAN), named entity recognition (MAN),
and mention recommendation (AU-HMNN).These five methods use
different attention mechanism to model the relationship between
entities. We can see that although these methods apply more com-
plex attention strategy, some of them are not better than the simple
LSTM model, such as CAN and MLAN. Due to the use of too many
historical tweets, attention-based methods have difficulty focusing
on the indicator tweets, which would be detailed in Section 5.3.
The method AU-HMNN [10] uses a memory network to store his-
torical tweets, and achieves start-of-the-art results. However, like
other attention-based methods, the AU-HMNN can hardly avoid
the interference of irrelevant tweets, which limits it’s performance.
Hence, the CROMA, which can effectively handle noisy historical
tweets, achieves better results.

Category III shows the proposed methods adopting different
strategies in selecting historical tweets. We set Random Sampling

method to randomly select half of the historical tweets. Compared
to random sampling models, the model that adopts unified advan-
tages (IQL) achieves better performance, with an 70.65% F1 score,
but still not better than the state-of-the-art mention recommenda-
tion method (AU-HMNN). As explained above, when using unified
advantages it is difficult to optimize each selector. If we use the
differentiated advantages proposed in our model to optimize the
selectors, the CROMA achieves the best performance, with a value
of 74.32% for the F1 measure. The Hits@3 and Hits@5 results, in
particular, are respectively 86.36% and 95.00%, almost 3% better than
the state-of-the-art methods. In addition, the proposed method ob-
tains the highest MRR score, which indicates that the ground-truth
mentioned users in our recommendation system obtain higher av-
erage recommendation rankings. Therefore, using differentiated
advantages is much more effective than using unified advantages.

In Figure 3, we plot the precision, recall, and F1 score of the
different methods with various numbers of recommended users.
The number of recommended users ranges from one to five. Based
on the results, we can see that the performance of CROMA is
the highest of all the curves. In particular, when the number of
recommended users is set to five, the proposed method obtains a
value of 95% for recall, which is much better than the other methods.
Next, we demonstrate why our selection strategy is more effective
than other strategies.

5.2 Effectiveness of Selected Historical Tweets
To verify the effectiveness of the selection strategy used in our
method, we applied the CROMA reinforcement learning module to
other neural network-based baseline models, and then trained all
the models on the benchmark to obtain new results. We compared
the baseline models at two main settings. The first setting was train-
ing baseline models with the CROMA module on the benchmark
with all 50 historical tweets of each user , which we denoted as “w/
RL.” The second setting was training the same model without the
CROMA module with all 50 historical tweets of each user, which
we denoted as “w/o RL.” We also trained baseline models on the
benchmark with only five random selected historical tweets of each
user, which we denoted as “w/o RL *.” Table 3 shows a comparison
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Figure 3: Precision, Recall and F-score with different number of recommended users.

Thanks so much! I’m so lucky to meet you in this special day.

How does a $25,000 summer bonus sound? Enter to win at URL 

Everyone is talking about @jessemetcalfe & his singing.

Thanks for the love guys. I had an amazing time with both of you.

Learn to love a suit! @lawrence  talks getting fancy for #FathersDay!
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Figure 4: Tweet selection examples by differentmethods. For CROMA, 1 or 0means the tweet is selected or not. For AU-HMNN,
the value is the attention weight.

of the results, in which we can see that for hit@5, simply incor-
porating more historical tweets can not improve the performance
steadily (as AU-HMNN), sometimes even result in performance
degradation (as DAN). On the contrary, all the baseline methods
perform better when they incorporate the CROMA module. The
average improvement of baseline models with CROMA module for
F1, Hits@3 and Hits@5 scores are roughly 0.91%, 1.73%, and 1.35%,
respectively, which verifies that the selection strategy effectively
promotes the performance of the mention recommendation task.

5.3 Indicator Tweets Discovery
Besides analyzing the effectiveness of our model, we also explored
what kind of posts can indicatemention behaviors andwhyCROMA
is better than an attention-based model. We trained the CROMA
and the baseline models on the benchmark and then visualized the
weights of the attention models and the behaviors of the CROMA.
Figure 4 shows an example with respect to tweet selection. The
tweet histories of the user and mentioned user contain several
indicator tweets on the topic of makeup. However, because there are
too many historical tweets, the attention model is easily negatively
impacted by the presence of useless tweets. By contrast, the CROMA
can correctly select relevant tweets and remove irrelevant tweets
by an analysis of the current action and reverse action. Because it
is less affected by the presence of irrelevant tweets, the model can
make inferences with less confusion.

5.4 Ablation Test for State Designing
In this subsection, we evaluate the relative contribution of different
factors of the state in CROMA to performance. The state in CROMA

Table 4: Ablation test on different state representations.

State Precision Recall F1
ALL 74.55 74.09 74.32
−Hindi ,Hir r e 73.27 72.95 73.11
−Hindi ,Hir r e , tq 71.13 70.76 70.94
−OK 72.96 72.43 72.69
−OK + avд(H ) 71.59 70.98 71.28

consists of the query-tweet representation tq , current tweet repre-
sentation hi , global feature OK , the representation of the indicator
post set Hindi , and the representation of the irrelevant post set
Hir r e . Here, we test each factor by removing it and retraining the
model on the benchmark from scratch, using the same random seed.
The results are shown in Table 4.

Based on the results in the table, we can make three key points.
First, the query-tweet representation is necessary. Because the
model recommends mention candidates for the query tweet, if the
CROMA does not use query tweet as a feature, it cannot take the
correct action. Hence, the model without tq performs 2.17% worse
than the CROMA with respect to the F1 score. Second, the global
feature OK is important. At several initial steps, the CROMA has
difficulty determining how to select the historical tweets based on
the query tweet alone. The global feature OK provides valuable
information to the model, which increases the F1 score by 1.63%.
However, if we simply average all the historical tweets, avд(H ), as
a substitute for OK , the results do not improve, which indicates
that the featureOK is more efficient than avд(H ). Third, historical
actions can help to determine new actions. Reinforcement learning



is a process of sequential decision-making. The acquisition of his-
torical actions made at an earlier time can help in formulating the
current action. Hence, the model with Hindi and Hir r e performs
1.21% better than that without.

6 CONCLUSIONS
In this work, we proposed a cooperative multi-agent approach for
mention recommendation, which can effectively incorporate dozens
of times as many historical tweets as previous approaches. To solve
the problem of the same reward for all agents, we designed a reverse
action mechanism to obtain differentiated rewards for two policy
gradient agents to simultaneously select a small set of historical
tweets from users and candidate mentioned users. We constructed
and evaluated on a new mention recommendation dataset, in which
each user contains dozens more historical tweets than previous
works. Experimental results for the dataset show that the proposed
method can significantly improve performance compared to those
of other baseline approaches.
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