
Model the Long-term Post History for Hashtag
Recommendation?

Minlong Peng, Qiyuan Bian, Qi Zhang, Tao Gui, Jinlan Fu, Lanjun Zeng, and
Xuanjing Huang

School of Computer Science, Fudan University, Shanghai, China
{mlpeng16,qybian19,qz,tgui16,fujl16,ljzeng18,xjhuang}@fudan.edu.cn

Abstract. The goal of this work is to provide a keyword-suggestion-like hash-
tag recommendation service, which recommends several hashtags when the user
types in the hashtag symbol ”#” while writing a post. Different from previously
published hashtag recommendation systems, which only considered the textual
information of the post itself or a few numbers of the latest posts, this work pro-
posed to model the long-term post history for the recommendation. To achieve
this purpose, we organized the historical posts of a user in the time order, ob-
taining a post sequence. Based on this sequence, we proposed a recurrent-neural-
network-based framework, called the Parallel Long Short-term Memory (PLSTM),
to perform the post history modeling. This was motivated by the success of the
recurrent neural network in modeling the long-term dependency of dynamic se-
quences. The hashtag recommendation was performed based on both the current
post content representation and the post history representation. We evaluated the
proposed model on a real dataset crawled from Twitter. The experimental results
demonstrated the effectiveness of our proposed model. Moreover, we quantita-
tively studied the informativeness of different parts of the post history and proved
the feasibility of organizing the historical posts of a user in the time order.

Keywords: Hashtag recommendation · long-term post history · neural memory
network.

1 Introduction

A hashtag (single token starting with a # symbol) is used to index keywords or topics
on microblog services. It usually consists of natural language n-grams or abbreviations,
e.g., ”#Universe”, ”#MentalHealth”, or ”#US”. People use the hashtag anywhere in
their posts to indicate an object concisely or categorize those posts for easier search-
ing. However, because there are an increasing number of hashtags, it is not easy for
users to find an appropriate hashtag matching their intention when they intend to insert
one. Therefore, it is necessary to provide a keyword-suggestion-like service that recom-
mends several hashtags when a user wants to insert a hashtag (types in the # symbol).

In recent years, a variety of methods have been proposed from different perspec-
tives to perform hashtag recommendation [1–5]. These approaches can be generally
organized into two groups. The first group of methods mainly focus on modeling the
? The authors wish to thank the anonymous reviewers for their helpful comments.



2 Peng et al.

textual content of posts, which is traditionally dominated by topic-model-based meth-
ods [6, 7]. Recently, this dominance has been overturned by a resurgence of interest
in deep neural network (DNN) based approaches [8, 9]. The second group of methods
additionally models the personal information of the user, which is commonly extracted
from his/her post history. For example, Zhang et al., [10] proposed the TPLDA model
for this purpose. It grouped posts by user and introduced an additional parameter for
each user to the LDA model. The experiment results of these works have demonstrated
the informativeness of the post history. However, most of these methods can only model
a short and fixed length of post history. Thus, they in common truncated the post history
and only modeled the latest, or the short-term, post history while ignoring the long-term
post history for the recommendation.

In this work, we argue the informativeness of the long-term post history for the
hashtag recommendation. One of the typical challenge in modeling the long-term post
history results from its incrementally increasing size. It is either computationally unac-
ceptable (TPLDA) or structurally inapplicable (HMemN2N) for the previous methods
to model the long-term post history. For example, simply extending the memory size of
HMemN2N to encode more historical posts will greatly increase the computation cost
while even harm the performance. This results from two reasons. First, increasing the
size of the post history will disturb their assumption that historical posts at different
time step are equally important for the current recommendation. Second, it will greatly
increases the input dimension of the recommendation module, making it easy over-fit
the training data set. To tackle this challenge, we proposed a recurrent-neural-network-
based model, called the Parallel Long Short-term Memory (PLSTM), to perform this
task. It organized the historical posts of the user in the time order (demonstrated to be
helpful in our experiments), resulting a post sequence, and then applies the PLSTM
model to this sequence. This takes the advantage of the RNN in modeling the dynamic
sequence and long-term dependency. In addition, it treats the content and hashtag as two
different views of the post and models them separately, rather than treating the hash-
tags as normal words. We argue that this has several benefits. First, it does not need to
constrain the representations of words and hashtags in the same vector space. Second,
it reduces the word vocabulary size for representing the hashtags. Finally, it highlights
the hashtag information.

In summary, the contributions of this paper are as follows: (i) We provide a keyword-
suggestion-like hashtag recommendation service, which recommends several hashtags
for choice when the user types in the “#” symbol. (ii) We model the entire post his-
tory for the recommendation using a recurrent-neural-network-based model. (iii) We
quantitatively study the influence of different parts of the post history on the system
performance and prove the feasibility of organizing posts in the time order.

2 Related Work

Hashtag recommendation has been extensively explored and developed over the last few
years. Many approaches have been proposed from different perspectives to perform this
task. In general, these approaches can be organized into two groups.



Model the Long-term Post History for Hashtag Recommendation 3

The first group of methods treats posts of different users without any distinction.
It mainly focuses on modeling the post content. This is historically dominated by the
topic-based-methods [6, 12–16]. Godin et al., [15] proposed to incorporate topic mod-
els to learn the underlying topic assignment of language classified tweets, and suggested
hashtags for a tweet based on the topic distribution. Under the assumption that hashtags
and tweets are parallel description of a resource, Ding et al. [14] tried to integrate latent
topical information into translation model. However, with the development of neural
networks, the dominance of topic-based approaches has recently been overturned by
the neural-network-based approaches[8, 9, 17–19]. Dhingra et al., [8] treated a post as
a character sequence and modeled it with a Long Short-term memory network. Gong
and Zhang, [9] applied a convolution neural network to model the post content. They
also introduced an attention mechanism into their system to select key features within
the tweet.

The second group of methods also consider personal information of users when
performing recommendations. Most of them extract the personal information from the
post histories of users [7, 9, 11, 16]. Wang et al., [20] proposed combining the topic
model with collaborative filtering. They extracted the user representation from the post
history and predicted users’ hashtag usage preferences in a collaborative filtering man-
ner. Zhang et al., [10] grouped posts by user and introduced an additional parameter
for each user in the LDA model. Huang et al., [11] constructed the post history with
the latest five historical posts and stored them in an end-to-end memory. For recom-
mendations, they recursively accessed the memory with the current post content. To
deal with the dynamical length of the post history, the above method truncated the post
history into a fixed length, with the latest historical posts left. In this work, however,
we propose a recurrent framework to model the post history. It can model a dynamic
number of historical posts and keep the long-term post history available for the current
recommendation. Experimental results empirically demonstrated the effectiveness of
this framework and proved the informativeness of the long-term post history.

3 Recurrent Hashtag Recommendation

The proposed model conceptually consists of four modules, i.e., the content representa-
tion module for encoding the post content, the hashtag representation module to obtain
the hashtag representation, the recurrent module for modeling the post history, and the
recommendation module. The general architecture is depicted in Figure 1. This figure
was especially designed to highlight the core of this model in modeling the long-term
post history for the recommendation.

3.1 Content Representation

In this work, we use a one-layer convolution network to model the post content. It is a
variant of the traditional convolution network proposed by Kim et al., [21] for sentence
encoding. And this architecture has been demonstrated to be quite effective for this task
[9]. Specifically, let wi ∈ Rkw be the kw-dimensional word vector, corresponding to



4 Peng et al.

tanh

tanhσ

tanh

𝐡𝟏

𝐜𝟏 𝐜𝟐

𝐡𝟐

ULSTM

RLSTM

𝐇𝟐

𝐱𝟏 𝐱𝟐 𝐱𝐭−𝟏
⋯

𝐇𝟏

𝐜𝐭−𝟐

𝐡𝐭−𝟐

𝐇𝐭−𝟏

PLSTMPLSTM PLSTM

𝐜𝟎

𝐡𝟎

σ σ

σσ

𝐇2

𝐱𝟐

⋯

⋯

𝐡𝐭−𝟏 𝐡𝐭RLSTM

𝐜𝐭−𝟏

𝑺𝒐𝒇𝒕𝒎𝒂𝒙

෡𝐇𝐭

𝐱𝐭

tanhσσ σ

Content Representation

Hashtag Representation Recommended Hashtag

Fig. 1: General architecture of the recurrent hashtag recommendation framework. Here, xi and
Hi are the content and hashtag representation of the ith post. For the recommendation of a
user at time step t, it first organizes the historical posts of the user in the time order, obtain-
ing a content representation sequence [x1,x2, · · · ,xt−1] and a hashtag representation sequence
[H1,H2, · · · ,Ht−1]. Then, it models the post history with our proposed PLSTM recurrent net-
work and obtains two vector representations of the post history ct−1 and ht−1. Finally, it per-
forms the hashtag recommendation based on the mixed representation ht of the post history and
the current post content xt.

the ith word of the post. A post of length n (padded if necessary) is represented as

p =
[
w1, · · · wn

]
The one-layer convolution network takes the dot product of the filter m ∈ Rkw×h with
each h-gram in p to obtain sequence s with the following:

si = f(m · pi:i+h−1 + b). (1)

Here, b ∈ R is a bias term, and f is the hyperbolic tangent (tanh) non-linear function.
This filter is applied to each possible window of words in the sequence
{p1:h,p2:h+1, · · · ,pn−h+1:n} to produce a feature map:

s = [s1, · · · , sn−h+1]

To address the problem of various post lengths, it then applies a max-over-time pooling
over the feature map and takes the maximum value ŝ = max (s) as the feature cor-
responding to this particular filter. By extending the operation to multiple filters with
various window sizes, it obtains multiple features:

x =
[
max(s1) · · ·max(sd)

]
. (2)

Here d is the filter number and si denotes the feature map extracted with the ith filter.
These features form the representation of the post.



Model the Long-term Post History for Hashtag Recommendation 5

3.2 Hashtag Representation

Most of the previous hashtag recommendation systems just treat the hashtag as a single
label and represent it with a randomly initialized trainable dense vector. This prac-
tice has two drawbacks. First, it loses the textual information of hashtags. Second, in
this practice, the size of the hashtag set is fixed. Adding new hashtags is not possible.
Therefore, in this work, we apply a recurrent neural network to the character sequence
of hashtags to obtain their vector representations. The formal definition is precisely
specified as follows:

ht = tanh(Wc · ct + bc) (3)

where ct ∈ Rdc is the vector representation of the tth character of the hashtag Hi =
{c1, c2, · · · , cn}, Wc ∈ Rdp×dc and bc ∈ Rdp are trainable parameters of affine trans-
formations. We use the final hidden state hn ∈ Rdp to represent Hi. And in the follow-
ing, we refer Hi to this vector representation if without further explanation.

3.3 Model the Post History with Recurrent Neural Network

The general architecture of the framework is depicted in Figure 1. For the recommen-
dation of a user at time step t, it organizes his/her historical posts in the time order. And
because we model the post content and the used hashtag separately, we obtain two se-
quence representations of the post history, i.e., the content sequence [x1,x2, · · · ,xt−1]
and the hashtag sequence [H1,H2, · · · ,Ht−1]. We then applied a recurrent framework
PLSTM to the resulting two sequences, obtaining vector representations of the post
history ct−1 and ht−1. Finally, we perform the hashtag recommendation based on the
mixed representation ht of the post history and the current post content. To achieve
this purpose, we extend the long short-term memory network and design a parallel long
short-term memory framework to perform this task which we describe below.

Parallel Long Short-term Memory The proposed recurrent module PLSTM contains
two parallel LSTMs, with one (RLSTM) performing recommendations based on the
memory and post content, and the other (ULSTM) performing memory updating. These
two parallel LSTMs share the memory content as depicted in Figure 1. We separate
the operations of recommendation and memory updating to make it easy to encode the
object hashtag, chosen by the user after the recommendation performed, to the memory.
The formal definition is as follows:

it
ft
ot

c̃t

 =


σ
σ
σ

tanh

(Wr

[
xt

ht−1

]
+ br

)
,

 îtf̂t
ĉt

 =

 σ
σ

tanh

Wu

 xt

Ht

ht−1

+ bu

 ,

ct = ĉt � ît + ct−1 � f̂t,

ht = ot � tanh(c̃t � it + ct−1 � ft).

(4)



6 Peng et al.

Table 1: Statistics of the dataset.

Item Train Develop Test
#User 2,000 1,000 1,000
#Tweet 127,846 8,086 9,190
#Example 187,247 13,174 13,946
#Hashtag 3,104 1,936 1,952
#Hashtag/User 23.54 6.28 6.29
#Word/Example 13.30 13.26 13.04

where σ is the element-wise sigmoid function and � represents element-wise product.
Wr ∈ R4dh×(dh+dx) and br ∈ R4dh are trainable parameters for transformation. And
Wu ∈ R3dh×(dh+dx+dp) and bu ∈ R3dh are trainable parameters for memory updating.
In addition, we argue that the recommendation and memory updating can be performed
incrementally. This is achieved by feeding the object hashtag Ht into the recurrent
module, updating ct−1 to ct. Note that Ht does not affect the recommendation of Ĥt.
It only affects the recommendation for future posts p>t. This is reasonable and practi-
cable because users will offer feedbacks immediately after the recommendation being
performed. Specifically, once we have performed the recommendation, a user will im-
mediately choose or type in a hashtag matching their intention. Thus, we can make use
of the object hashtag to adjust our system accordingly for future recommendations.

3.4 Recommendation

the hashtag recommendation of the proposed model is performed based on the mixed
representation ht of the post history and the current post content. To obtain the rank of
hashtag Hi as the recommendation candidate for post pt, we compare its representation
with ht, obtaining a matching score:

score(pt,Hi) = hT
t Hi, (5)

where hT
t denotes the transpose of ht. We apply a softmax non-linear operation to

obtain the probability of it as the recommendation candidate, as follows:

p(Hi|pt) =
exp (score(pt,Hi))∑NH

j=0 exp (score(pt,Hj))
, (6)

where NH is the size of the hashtag set. We recommend n hashtags with the highest
probability for post pt.

4 Experiment

4.1 Dataset

To perform the study, we collected data from 2,000 users (referred to as U in the follow-
ing) on Twitter. For each user, we crawled his/her tweets published from 2015/1/1 to
2015/2/28 as training data and tweets published from 2015/3/1 to 2015/3/10 as testing
data. This results in 127,848 training tweets and 17,276 testing tweets. Table 1 lists
some statistical information about this dataset.



Model the Long-term Post History for Hashtag Recommendation 7

4.2 Compared Methods

We first compared the proposed model with several state-of-the-art methods, including
methods that do not model the post history and those that model the short-term post
history:

– IBM1 [2]: IBM1 applies a translation model to obtain the alignment probability
between the word and the tag.

– TopicWA [14]: TopicWA is a topical word alignment model, in which the standard
LDA is employed to discover the latent topic.

– Tweet2Vec [8]: It applies a LSTM framework to the character sequence of a tweet
to obtain its vector representations and predict a hashtag using the encoded vector.

– LSTM-Attention [19]: This is an attention-based LSTM model, which incorpo-
rates an LDA-based topic model into the LSTM architecture through an attention
mechanism.

– TPLDA [10]: This is an LDA-based time-aware personalized hashtag recommen-
dation model. It models the short-term post history.

– HMemN2N [11]: HMemN2N is a hierarchy end-to-end memory network based
model. It constructs the post history with a fixed number (we adjusted this value on
the developing data set) of latest historical posts and stores them in an end-to-end
memory.

Then we explored the effectiveness of some components of the proposed model. To this
end, we implemented the following variants of PLSTM.

– PLSTM−Post History: This variant does not model the post history for the hash-
tag recommendation. For every post pt, the variant performs the recommendation
based on its content representation xt, with score(pt,Hi) = xT

t Hi.
– PLSTM−Hashtag History: This variant models the post history using the stan-

dard LSTM model. It does not separately models the hashtag history. Every hash-
tag within the post content is treated as a normal word with a randomly initialized
embedding representation.

4.3 Implementation Details

We implemented the TopicWA, Tweet2Vec, TPLDA, and HMemN2N models with
the code provided by their corresponding authors, and reimplemented other baselines.
Hyper-parameters of these models (e.g., topic number for TopicWA, and memory size
for HMemN2N) were adjusted on the developing data set. For the proposed model and
its variants, the embedding dimension of the characters and words were set to 50, 300
respectively. We initialized the word embeddings with Google word2vec1 [22]. For the
post content encoding, we used 200 filters for each n-gram size ∈ {1, 2, 3, 4}. Hidden
size of the recurrent network was set to 100. Dropout was applied to the word embed-
dings with a dropping probability of 0.5. For parameter updating, we used the Adadelta
[23] optimizer with the default settings of Blocks2.

1 https://code.google.com/p/word2vec/
2 http://blocks.readthedocs.io/en/latest/index.html



8 Peng et al.

Table 2: Comparison of the proposed model with state-of-the-art methods and two variants of it
on the test data set. Models with the † marker were implemented with the source code provided
by their corresponding authors. The first four baselines did not model the post history, while the
following two baselines modeled the short-term post history. The first variant (PLSTM−Post His-
tory) did not modeled the post history. The second variant (PLSTM−Hashtag History modeled)
the whole post history but did not separately model the hashtags history.

Models Hits@1 Hits@5

IBM1 [2] 0.2322 0.3043
TopicWA† [14] 0.3023 0.3975
Tweet2Vec† [8] 0.3116 0.4021
LSTM-Attention [19] 0.3413 0.4430
TPLDA† [10] 0.2737 0.5359
HMemN2N† [11] 0.3843 0.5460

PLSTM−Post History 0.3233 0.4350
PLSTM−Hashtag History 0.4151 0.6137

PLSTM (proposed) 0.4671 0.6645

4.4 Evaluation Metric

There are several evaluation metrics for hashtag recommendation, including Hits@N
[6, 24], Precision, Recall, and F1 [6, 11]. Because in the setting of this work, there is
only one ground truth hashtag for every recommendation, we choose the Hits@N metric
to evaluate the model performance. The definition is precisely specified as follows:

Hits@N =
Number of Hits

Recommendation times
.

Here a hit occured when the recommended N hashtags include the ground truth hashtag.

4.5 Results and Discussion

Table 2 lists the results of the proposed model compared to those of the state-of-the-art
baselines and its variants. From the table, we can obtain the following observations:
(1) Our proposed model PLSTM consistently outperforms all of the state-of-the-art
methods. This indicates the robustness and effectiveness of our approach. (2) For post
content modeling, the neural network based models Tweet2Vec, LSTM-Attention, and
PLSTM−Post History generally perform better than the LDA-based model TopicWA.
This explains the popularity of neural network based approaches for this task. (3) Mod-
els modeling the post history (e.g., TPLDA, HMemN2N and PLSTM−Hashtag His-
tory) generally outperform those not modeling the post history, especially on Hits@5.
This proves the informativeness of the post history for hashtag recommendation. (4)
The long-term post history can bring additional improvement to the recommendation
system. For example, compared to the HMemN2N model, there is an approximately
3% absolute improvement on Hits@1 and 5% absolute improvement on Hits@5 for our
variant PLSTM−Hashtaq History, which models the long-term post history. This empir-
ically verified our assumption that the long-term post history should be informative for



Model the Long-term Post History for Hashtag Recommendation 9

100%80%60%40%20%0%

Used Post History Portion

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

H
it

s@
n

Hits@5

Hits@1

Influence of Different Part of Post History

Fig. 2: Performance of the proposed model
on test data set using different portions of
post history. The 20% refers to the 20% of
the historical posts closest in time to the
testing data set, and it degenerates to the
PLSTM-Post History model when the his-
tory portion is 0%.

100%80%60%40%20%0%

Shuffled Post History Portion

0.3

0.4

0.5

0.6

0.7

0.8

H
it

s@
n

Hits@5

Hits@1

Influence of Organizing Posts in the Time Order

Fig. 3: Performance of the proposed model
on test data set when shuffling different
part of training data. The 20% refers to
the 20% of the historical posts closest in
time to the testing data set, and shuffling
the data means not organizing the posts in
the time order.

the current recommendation. (5) Additionally modeling the hashtag history can bring
further improvement to the system. This is observed from the comparison between the
proposed model and its variant PLSTM−Hashtag History.

4.6 Further Analysis

Influence of Different Part of Post History. From the above study, we know that the
long-term post history can indeed improve the hashtag recommendation quality at the
current time step. However, we do not know how much influence each part of the post
history has on the final recommendation performance. To explore this question, we per-
formed a study on different part of the post history. Specifically, during model inference,
we removed the training data of different time steps and re-generated the memory con-
tent cNu

and hNu
using the trained model for each user with the left training data. Note

that we did not re-train the model but only re-generated the memory content. Based
on the resulting memory content, we tested our proposed model on the testing data set.
Figure 2 shows the results of the proposed model using the latest 20%, 40%, 60%, 80%
and 100% of the the post history for each user.

From the figure, we can see that the performance of our proposed model continu-
ously increases as the post history increases. In addition, we can find that the improve-
ment speed by the size of the post history slowly decreases as the time gap between
the added historical posts and the test data set increases. For example, with the latest
20% of the post history, the performance increases by approximately 5% for Hits@1
and 10% for Hits@5. While additionally using the 20%-40% of the post history, the
performance only increases approximately 3% for Hits@1 and 5% for Hits@5. We ar-
gue that this is because the latest 20% of the post history has a greater influence on
the testing data than the 20%-40% of the post history. Similar observations could be
obtained from comparisons between other portions. From these observations, we can
see that the influence of the post history on the current recommendation decreases over



10 Peng et al.

time. This also explains why it cannot greatly increase the memory size of HMemN2N,
which treats every historical post equally.

Influence of Organizing Posts in Time Order. As previously mentioned, to make the
recurrent neural network applicable, we organize the posts of a user in time order. A
natural question is whether it is necessary to organize the historical posts in time order,
or in other words, whether there is somehow dependency between contiguous posts. To
answer this question, we designed the following experiment. For each user and his/her
corresponding training data {p1,p2, · · · ,pNu

}, we first shuffle the order of the latest
20%, 40%, 60%, 80% and 100% of the training data. Then, we re-trained the proposed
model on this training data set and tested on the original testing data set. The results are
shown in Figure 3.

From the figure, we can observe that shuffling the order of the training data degrades
the testing performance. This indicates that there is indeed a dependency relation be-
tween contiguous posts. And similarly, we can also observe that it has a greater influ-
ence on the testing performance when the shuffled training data are closer in time to the
testing data set. This verified again that the more recent post history is more informative
for the recommendation. From these observations, we can come to the a conclusion that
organizing historical posts in time order is indeed helpful to our system.

Inference Speed. Because this model was designed for real-time recommendation, it
was critical for it to be time efficient. This section considers its time efficiency for in-
ference. We supposed that recommendations had to be performed user by user and time
by time. Thus, it was not possible to run the program in parallel. Therefore, we gen-
erated the content embedding xt and performed recommendations sample by sample,
instead of grouping them into a batch and considering them together. Table 3 lists the
inference speeds on a GPU (NVIDIA TITAN X) and CPU (Intel(R) Xeon(R) CPU E5-
2650 v3 @ 2.30GHz) with Theano [25]. As can be seen, even on a CPU, without much
speed optimization, the average recommendation time is less than 0.4 s.

#Sample Device ms/Example
13,246 GPU 9.374
13,246 CPU 362.244

Table 3: Time efficiency of the pro-
posed model for inference.

Initialization Hits@1 Hits@5
Google 0.4630 0.6623
Random 0.4541 0.6567

Table 4: Performance of the pro-
posed model PLSTM+FM with
word embeddings initialized with
Google word2vecs or randomly.

Parameter Sensitivity. In this section, we want to investigate the hyper-parameter in-
fluence on the performance of our proposed model. We first studied the influence of
the pre-trained word embeddings. Table 4 lists the results of our proposed model with
and without pre-trained word embeddings. As shown by the results, pre-trained word
embeddings only provide a small benefit to the performance.

Another hyper-parameter of interest is the filter number Nf for each n-gram size.
We tried different settings for Nf ∈ {100, 150, 200, 250}. The results listed in Table



Model the Long-term Post History for Hashtag Recommendation 11

5 show that the proposed model is non-sensitive to the variation of the filter number,
especially on Hits@5. Considering the computation cost and performance, it is recom-
mended to set Nf ∈ (100, 250).

Table 5: Performance of the proposed model PLSTM+FM with different filter numbers.

FilterNum Hits@1 Hits@5
100 0.4623 0.6648
150 0.4563 0.6657
200 0.4630 0.6623
250 0.4600 0.6618

5 Conclusion

The work aimed to provide a keyword-suggestion-like hashtag recommends, which rec-
ommends several hashtags when the user types in the hashtag (#) symbol. In contrast
to previously published approaches, which did not consider the user’s post history or
only considered a few of the latest posts, the proposed model utilized the entire post his-
tory of the user to perform the recommendation. To this end, we organized the historical
posts of the user in the time order and proposed a recurrent-neural-network-based model
to perform the post history modeling. Experimental results on a dataset crawled from
Twitter showed that the proposed model could achieve state-of-the-art performance.

References

1. Sedhai,S.,andSun,A. 2014. Hashtagrecommendation for hyperlinked tweets. In Proceedings
of the 37th international ACM SIGIR conference on Research & development in information
retrieval, 831–834. ACM.

2. Liu, Z.; Chen, X.; and Sun, M. 2011. A simple word trigger method for social tag suggestion.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
1577–1588. Association for Computational Linguistics.

3. Kowald, D.; Pujari, S. C.; and Lex, E. 2017. Temporal effects on hashtag reuse in twitter: A
cognitive-inspired hashtag recommendation approach. In WWW, 1401– 1410.

4. Gong, Y.; Zhang, Q.; Han, X.; and Huang, X. 2017. Phrase-based hashtag recommendation
for microblog posts. Science China Information Sciences 60(1):012109.

5. Dey, K., Shrivastava, R., Kaushik, S., Subramaniam, L. V.: Emtagger: a word em-
bedding based novel method for hashtag recommendation on twitter. arXiv preprint
arXiv:1712.01562. (2017)

6. She, J., and Chen, L. 2014. Tomoha: Topic model-based hashtag recommendation on twitter.
In WWW, 371–372. ACM.

7. Zhao, F.; Zhu, Y.; Jin, H.; and Yang, L. T. 2016. A personalized hashtag recommendation ap-
proach using lda-based topic model in microblog environment. Future Generation Computer
Systems 65:196–206.

8. Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W. W. Tweet2vec: Character-based
distributed representations for social media. arXiv preprint arXiv:1605.03481. (2016)



12 Peng et al.

9. Gong, Y., and Zhang, Q. 2016a. Hashtag recommendation using attention-based convolu-
tional neural network. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI 2016).

10. Zhang, Q.; Gong, Y.; Sun, X.; and Huang, X. 2014. Time-aware personalized hashtag rec-
ommendation on social media. In COLING, 203–212.

11. Huang, H.; Zhang, Q.; Gong, Y.; and Huang, X. 2016. Hashtag recommendation using end-
to-end memory networks with hierarchical attention. In Proceedings of COLING 2016: Tech-
nical Papers, 943–952. Osaka, Japan: The COLING 2016 Organizing Committee.

12. Heymann,P.;Ramage,D.;andGarcia-Molina,H. 2008. Social tag prediction. In SIGIR,
531–538. ACM.

13. Krestel, R.; Fankhauser, P.; and Nejdl, W. 2009. Latent dirichlet allocation for tag recom-
mendation. In Proceedings of the third ACM conference on Recommender systems, 61–68.
ACM.

14. Ding, Z., Zhang, Q., Huang, X: Automatic hashtag recommendation for microblogs using
topicspecific translation model. In: 24th International Conference on Computational Lin-
guistics, pp. 265. Citeseer. (2012)

15. Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.:
Using topic models for twitter hashtag recommendation. In: Proceedings of
the22ndInternationalConferenceonWorldWideWeb, pp. 593–596. ACM. (2013)

16. Ma, Z.; Sun, A.; Yuan, Q.; and Cong, G. 2014. Tagging your tweets: A probabilistic modeling
of hashtag annotation in twitter. In Proceedings of the 23rd ACM International Conference
on CIKM, 999– 1008. ACM.

17. Ding, Z., Qiu, X., Zhang, Q., and Huang, X.: Learning topical translation model for mi-
croblog hashtag suggestion. In: IJCAI. (2013)

18. Tomar,A.;Godin,F.;Vandersmissen,B.;DeNeve,W.; and Van de Walle, R. 2014. Towards twit-
ter hashtag recommendation using distributed word representations and a deep feed forward
neural network. In ICACCI, 362–368. IEEE.

19. Li, Y.; Liu, T.; Jiang, J.; and Zhang, L. 2016. Hashtag recommendation with topical attention-
based lstm. In Proceedings of COLING 2016, 3019–3029.

20. Wang,Y.;Qu,J.;Liu,J.;Chen,J.;andHuang,Y. 2014. What to tag your microblog: Hashtag rec-
ommendation based on topic analysis and collaborative filtering. In Asia-Pacific Web Con-
ference, 610–618. Springer.

21. Kim, Y. 2014. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882.

22. Peng, X., and Gildea, D. 2016. Exploring phrasecompositionality in skip-gram models. arXiv
preprint arXiv:1607.06208.

23. Zeiler, M. D. 2012. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

24. Kywe, S.; Hoang, T.-A.; Lim, E.-P.; and Zhu, F. 2012. On recommending hashtags in twitter
networks. Social Informatics 337–350.

25. Theano Development Team. 2016. Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints abs/1605.02688.


