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Abstract

Motivation: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic
medical consultation and enhance patient experience. In this article, we propose two frameworks to support auto-
matic medical consultation, namely doctor–patient dialogue understanding and task-oriented interaction. We create
a new large medical dialogue dataset with multi-level fine-grained annotations and establish five independent tasks,
including named entity recognition, dialogue act classification, symptom label inference, medical report generation
and diagnosis-oriented dialogue policy.

Results: We report a set of benchmark results for each task, which shows the usability of the dataset and sets a
baseline for future studies.

Availability and implementation: Both code and data are available from https://github.com/lemuria-wchen/imcs21.

Contact: jiajiepeng@nwpu.edu.cn or zywei@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Online medical consultation has shown great potential in improving
the quality of healthcare services while reducing cost (Singh et al.,
2018), especially in the era of raging epidemics, such as Coronavirus
(Singhal, 2020). This fact has accelerated the emergence of online
medical communities like SteadyMD (https://www.steadymd.com)
and Haodafu (https://www.haodf.com/). These platforms provide a
medium for doctors and patients to communicate with each other
remotely, which is called telemedicine (Wootton, 2001).

Typically, in telemedicine, the patient first provides a brief sum-
mary of their physical condition, i.e. self-report, then the doctor
communicates with the patient to learn more about the patient’s
health condition. After sufficient inquiry, the doctor may make a
diagnosis and provide further medical advice. The electronic record
of this process is called Medical Consultation Record (MCR).
Figure 1 demonstrates an example of MCR, which consists of
patient’s self-report, plain text of dialogue and corresponding
disease category.

Recently, researchers have paid close attention to develop auto-
matic approaches to facilitate online consultation service. Research
topics include medical named entity recognition (Zhou et al., 2021),

drug recommendation (Zheng et al., 2021), automatic text-based
diagnosis (Chen et al., 2020), health question answering (He et al.,
2020), medical report generation (Joshi et al., 2020) and diagnostic
policy (Wei et al., 2018). Although progresses have been made to
support automatic medical consultation from different perspectives,
there is still a large gap between existing work and real-world appli-
cation. We summarize this gap to two major limitations: (i) lack of
design of frameworks and tasks for automatic medical consultation;
and (ii) lack of benchmark datasets to support the development of
research and application.

In this article, we make the first step to build a framework for auto-
matic medical consultation and propose several tasks to cover the en-
tire procedure. Two modes of frameworks are proposed to support
both static and dynamic scenarios, namely, dialogue understanding
and task-oriented interaction. The understanding framework aims to
extract structured information from the dialogue context and generate
useful labels to describe the dialogue state, which can include the
patient’s health status, patient’s intention, etc. The interaction frame-
work is designed to learn the dialogue policy (DP), i.e. to select the
next action based on the current dialogue state, such as asking the pa-
tient whether he or she has a certain symptom. We create a corpus
called IMCS-21 with multi-level fine-grained annotations to support
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the research and application development of five tasks under the two
modes. We develop widely used neural-based models for each task and
report a set of benchmark results, which shows the usability of the cor-
pus and sets a baseline for future studies. We conduct a comprehensive
analysis of our corpus and tasks to show great future opportunities.

The main contributions of this article can be summarized as fol-
lows: (i) we propose a design of frameworks and tasks for automatic
medical consultation and introduce IMCS-21, a large-scale anno-
tated medical dialogue corpus, whose superiority makes it potential-
ly a great benchmark for medical dialogue modeling; and (ii) we
created neural-based models for each task and report a set of bench-
mark results. We will continue to track the progress of these tasks.

2 Related work

To build an automatic medical consultation system, learning from a
large amount of actual doctor–patient conversations and directly
imitate human behavior may be the best strategy. There are already
a few medical dialogue corpus introduced by previous studies. These
corpuses can be roughly divided into two categories.

One such category is original medical conversations corpus be-
tween patients and doctors with no annotations. MedDialog (Zeng
et al., 2020) is a large-scale medical dialogue dataset that contains a
Chinese dataset with 3.4 million conversations covering 172 special-
ties of diseases and an English dataset with 0.26 million conversa-
tions covering 96 specialties of diseases. KaMed (Li et al., 2021) is a
knowledge aware medical dialogue dataset that contains over
60 000 medical dialogue sessions and is equipped with external
medical knowledge from Chinese medical knowledge platform. The
tasks built on these corpuses are usually response generation in dia-
logue systems, on which researchers can build automated medical
chatbots. However, the responses generated by such end-to-end
chatbots lack interpretability and controllability, which has strong
limitations in healthcare applications.

Another category is the annotated doctor–patient medical dia-
logue corpus. The annotated content of these corpuses is related to
the task they focus on and the researchers establish a series of medic-
al dialogue modeling tasks including natural language understand-
ing, natural language generation and DP. MSL (Shi et al., 2020) is a
dataset for slot filling task, which aims to transform a natural lan-
guage medical query in which colloquial expressions exist into the
formal representation with discrete logical forms to perform correct
query. CMDD (Lin et al., 2019), SAT (Du et al., 2019) and MIE
(Zhang et al., 2020) are datasets for medical information extraction
task, which is extract mentioned entities and their corresponding
status. MZ (Wei et al., 2018), DX (Xu et al., 2019) and RD/SD
(Zhong et al., 2022) are datasets that contain structured symptom
features to learn the DP for symptom-based automatic diagnosis.
Chunyu (Lin et al., 2021) is a dataset for end-to-end diagnosis-ori-
ented response generation task. MedDG (Liu et al., 2022) contains
more than 17K conversations with annotated entities, and two

medical dialogue tasks are established. One is the next sentence en-
tity prediction and the other is the dialogue response generation.

One challenge of existing datasets is the medical label insuffi-
ciency. The majority of datasets only provide one specific medical
labels, e.g. medical entities. These labels are too coarse to accurately
describe the patient’s state and intent. Another challenge is the small
scale of existing annotated datasets, typically on the order of hun-
dreds of dialogues. In the Supplementary Material, we present the
comparative details between IMCS-21 and existing medical (dia-
logue) datasets.

3 Automatic medical consultation: frameworks
and tasks

We present our design of frameworks and tasks for automatic med-
ical consultation system in Figure 2.

3.1 Dialogue understanding framework
The understanding framework includes four tasks: Named Entity
Recognition (NER), Dialogue Act Classification (DAC), Symptom
Label Inference (SLI) and Medical Report Generation (MRG).

Named entity recognition: Medical NER task aims to recognize pre-
defined medical named entities from medical texts (Zhou et al.,
2021). Medical related entities are widely present in actual doctor–
patient conversations, and NER is a basic task for extracting medic-
al semantics.

Dialogue act classification: DAC is the task of classifying an utter-
ance with respect to the function it serves in a dialogue, i.e. the act
the speaker is performing (Liu et al., 2017). In medical dialogues,
the identification of dialogue act is an important aspect in analyzing
the doctor’s and patient’s intent and what they are trying to convey.

Symptom label inference: Symptoms are the main topics discussed in
medical dialogues and an important basis for doctors to make a
diagnosis (Lin et al., 2019). The goal of SLI task is to identify men-
tioned symptoms from the dialogue, align them to standardized
names and determine whether a patient suffers from these symp-
toms. SLI task generates a clearer structured symptom features
about the patient.

Medical report generation: Medical report captures and summarizes
the important parts of the medical conversation needed for clinical
decision making and subsequent follow ups (Joshi et al., 2020). As a
way to record and convey medical information, MRG task addresses
a practical need and plays an important role in medical practice.

3.2 Task-oriented interaction framework
The interaction framework controls the process of man–machine
dialogue, which is to determine the future dialogue strategy based
on historical information. For interaction framework, we introduce
Diagnosis-oriented Dialogue Policy (DDP) task, which follows the
setting of task-oriented dialogue system (Wei et al., 2018).

Diagnosis-oriented dialogue policy: The DDP task aims to learn the
optimal policy for symptom-based automatic disease diagnosis. The
policy is expected to efficiently find potential symptoms of patients
and make a correct diagnosis, through several turns of interaction. It
is worth noting that the training data required for DDP is exactly
the structured symptom features the SLI task needs to predict.

4 Medical dialogue corpus: IMCS-21

In this section, we present our collection and analysis of the anno-
tated dataset. The raw data come from Muzhi (http://muzhi.baidu.
com), a Chinese online health community that provides professional
medical consulting service for patients. We collect extensive MCRs
for 10 pediatric diseases. After removing some incomplete samples
and samples with too short dialogues, we annotate the filtered sam-
ples to form our medical dialogue corpus, which we call IMCS-21.

Fig. 1. An example of MCR, where the text is translated from Chinese
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4.1 Annotation scheme
The annotation scheme is designed by medical experts with consid-
eration of our task design as well as actual scenarios of online
consultation.

Specifically, we collect multi-level annotations for each MCR,
including token level, utterance level and dialogue level. At token
level, the annotator is asked to find medical named entities; at utter-
ance level, the intention of each utterance is annotated; at dialogue
level, the symptom features are collected, and the medical report is
manually written.

Medical named entity: We define five main categories of entities for
annotation after discussing with domain experts, i.e. symptom (SX),
drug name (DN), drug category (DC), examination (EX) and oper-
ation (OP). These categories of entities, we believe are important for
understanding the doctor–patient dialogue. Among them, drug
name represents a specific drug name while drug category represents
a class of drugs with a certain efficacy. For example, ‘aspirin’
belongs to DN while ‘anti-inflammatory drug’ belongs to DC.
Besides, OP represents related medical operations, such as ‘infu-
sion’, ‘atomization’, etc.

Inside–outside–beginning (BIO) (Ramshaw and Marcus, 1999) tag-
ging scheme is employed, where ‘B’ and ‘I’ determine the boundary
of an entity. For each Chinese character, ‘B’ stands for the beginning
of the entity, ‘I’ means inside and ‘O’ means other. This results in 11
possible tags for tokens. We assign an initial label to each token
using a rule-based algorithm (Aho and Corasick, 1975) to prompt
the annotation process.

Dialogue act: The categories of dialogue acts are determined accord-
ing to the specific content of the utterance. It can be broadly divided
into two big categories: request (R) and inform (I), one means ‘ask
for information’, and another means ‘tell the information’. We fur-
ther categorize the content of information conveyed as: basic infor-
mation (BI), symptom (SX), etiology (ETIOL), existing exam and
treatment (EET), medical advice (MA), drug recommendation (DR),
precautions (PRCTN) and diagnose (DIAG). There are both request
and inform versions for all categories except DIAG. Utterances that
does not fall into the above categories will be labeled as other
(OTR).

This results in a total of 16 possible categories of dialogue acts in
our scheme. Each utterance in a dialogue is tagged with one of these
categories. In this article, we use abbreviations to denote specific
dialogue acts. For example, R-SX is abbreviated for request-symp-
tom, which represents the intent of asking someone for relevant
symptoms. To be more intuitive, we demonstrate several examples
for each entity category and dialogue act category in the
Supplementary Material.

Symptom label: In order to clarify the relationship between the
symptoms appearing in the dialogue and the patient, each symptom
entity is additionally tagged with a label: Positive (POS), Negative
(NEG) or Not Sure (NS), to indicate whether the patient has the
symptom. The symptom label determines the relationship between
the symptom and the patient. The annotator can infer the symptom
label by observing the utterance where the symptom entity is located
and its context. Besides, all identified symptoms are normalized by
linking them to the most relevant one on SNOMED-CT2 (https://
www.snomed.org/snomed-ct), which can unify different expressions

of the same symptom into one standard name. Symptoms mentioned
in self-report are also identified and normalized.

Medical report: Annotators are also required to write a report in
specified format to summarize the medical consultation case. It con-
tains six parts: (i) chief complaint: patient’s main symptoms or signs;
(ii) present disease: description of main symptoms; (iii) auxiliary
examination: the patient’s existing examinations, examination
results, records, etc.; (iv) past medical history: previous health condi-
tions and illnesses; (v) diagnosis: diagnosis of disease; and (vi) sug-
gestions: doctor’s suggestions of inspection recommendations, drug
treatment and precautions. Annotators are required to fill in these
parts and leave it blank if the part is not mentioned in the dialogue.

4.2 Inter-annotator agreement
For the annotation of medical dialogues, we develop a web-based
tool, which can be utilized for general-purpose multi-turn dialogue
labeling. We recruit undergraduates and postgraduates in medical
school to annotate our corpus. All annotators are people who are
willing to participate and over the age of 18.

Two annotations per dialogue are gathered, and inconsistent
parts are further finalized by a third annotator. We use Cohen’s
kappa coefficient (Banerjee et al., 1999) to estimate the inter-
annotator agreement. For the annotations of medical named entities
and dialogue acts, the kappa coefficients are 83.11% and 76.41%,
respectively; for the annotations of symptom labels, the kappa coef-
ficients is 92.71%; for medical reports, both reports are remained
for reference. These results show that the consistency between the
annotators is satisfactory.

4.3 Corpus analysis
Corpus statistics: IMCS-21 contains a total of 4116 annotated sam-
ples with 164 731 utterances, which covers 10 pediatric diseases:
bronchitis, fever, diarrhea, upper respiratory infection, dyspepsia,
cold, cough, jaundice, constipation and bronchopneumonia. Each
dialogue contains an average of 40 utterances, 523 Chinese charac-
ters (580 characters if including self-report) and 26 entities (see in
Table 1).

Dialogue content analysis: The distribution of number of entity cate-
gories and dialogue act categories are shown in Figure 3a and b.
Briefly, symptom entities appear the most in conversations, about
58.3%. Similarly, the two categories with the highest proportion of
dialogue acts are I-SX and R-SX. This indicates that doctor–patient
conversations mainly discuss the patient’s symptoms. Examinations,
drugs, advice and precautions are also common topics, this suggests
that patients try to find medical solutions in consultations.

It is worth noting that for any specific category of dialogue act, it
is either almost from doctors or patients (Fig. 3b). However, there
are some exceptions. For example, the category I-SX means telling
the other about the symptoms, which intuitively will only come
from the patient who tells the doctor his symptom. But sometimes
the doctor may remind the patient what symptoms they actually
have, based on their previous vague description. For example, the
utterance ‘your body temperature is relatively high, it is febrile’ from
the doctor will be labeled as I-SX.

Dialogue structure analysis: Figure 3c presents the positional distri-
bution characteristics of dialogue act categories. We divide utteran-
ces in a dialogue into five parts according to their locations. For
example, 0–20% means the sentences appeared in the first fifth of

Table 1. Statistics of IMCS-21

Statistics Avg.

# of utterances per dialogue 40

# of characters per utterance 523

# of characters per self-report 57

# of entities per dialogue (annotated) 26

# of characters per medical report (annotated) 88

Fig. 2. Framework and task design for automatic medical consultation
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the conversation. From the figure, we conclude that with the in-
depth of medical consultation, the focus gradually shifts from symp-
toms to drugs, treatments and precautions. Clearly, there are certain
regularities in the structure of medical dialogues for the purpose of
diagnosis.

Symptoms analysis: We present the statistics of symptoms and
symptom labels in Table 2. Each self-report and dialogue contains
1.7 and 6.6 (unique) symptom entities on average. In the dialogue,
the number of non-positive symptom entities account for nearly
40%, which means that a large proportion of the symptoms in the
conversation may not be related to the patient.

Medical reports analysis: In the annotation of medical reports,
without being provided with true disease labels, the annotators are
required to populate the diagnosis part with the patient’s disease
they infer from the conversation. Therefore, the accuracy of the con-
tent of this part can roughly assess how well the annotator under-
stands the dialogue. By regex matching, we find that in 84.7% of
the reports, the content of the diagnosis part contains the text of the
actual disease or the key concepts, which ensures the quality of med-
ical reports acceptably.

It is worth noting that some diseases are hard to distinguish from
others, or are themselves a symptom of other diseases. In this case,
annotators are easily confused. For example, when the real disease is
Cold, only 65.6% of the reports contain the key concepts of cold in
the diagnosis part. When the disease is Jaundice, the proportion is as
high as 98.1%.

Besides, the Present disease and Suggestions part has about 30
and 20 words on average respectively, which occupy the main con-
tent of medical reports, while a considerable percentage (about
60%) of past medical history is empty, because this part is less
involved in the dialogue.

5 IMCS-21 as a new benchmark

As introduced in Section 3, we break down the medical consultation
modeling into two modes of frameworks, comprising a total of five
tasks. To show the potential usefulness of IMCS-21, we establish a
standard split for IMCS-21 at the dialogue level, and report a bench-
mark result for each of the task: NER, DAC, SLI, MRG and DDP.
The split is consistent across all tasks, consisting of a training set
with 2472 dialogues, a develop set with 833 dialogues and a test set
with 811 dialogues.

Before presenting the experimental results, we first introduce
some notations. Let X ¼ fx1;x2; . . . ; xTg be a piece of doctor–pa-
tient dialogue, where xi ¼ fxi;1; xi;2; . . . ;xi;ng is the i-th utterance
and xi;j 2 V is the j-th token in xi. The self-report and the disease cat-
egory of the patient are denoted as x0 and y 2 D, respectively, then a
MCR can be represented as: fx0;X; yg.

The formalization of each task will be introduced in each subsec-
tion, and readers can refer to the notations in Table 3 to better
understand our task and evaluation settings. For each task, we only

report the baseline models, evaluation metrics and experimental

results, the details of experimental settings are provided in the
Supplementary Material.

5.1 Named entity recognition
Task formalization: Robust medical NER is the first step in under-

standing doctor–patient conversations. The NER task is designed to
automatically predict the boundaries and categories of pre-defined
medical named entities contained in the dialogue. Formally, the

NER task aims to predict the BIO label bj
i 2 B for each token xi;j

given the utterance xi.

Experimental settings: We use several popular Chinese named entity

models as baselines, including: (i) Lattice LSTM (Zhang and Yang,
2018a), an extension of Char-LSTM that incorporates lexical infor-
mation into native LSTM; (ii) BERT (Devlin et al., 2019), a bidirec-

tional Transformer encoder with large-scale language pre-training;
(iii) ERNIE (Zhang et al., 2019); an improved BERT that adopts

entity-level masking and phrase-level masking during pre-training;
(iv) FLAT (Li et al., 2020), a flat-lattice Transformer that converts
the lattice structure into a flat structure consisting of spans; (v)

LEBERT (Liu et al., 2021), a lexicon enhanced BERT for Chinese se-
quence labeling, which integrates external lexicon knowledge into

BERT layers by a lexicon adapter layer; (vi) MC-BERT (Zhang
et al., 2022), a BERT model pre-trained on 20M Chinese biomedical
sentences using whole entity masking and whole span masking; (vii)

ERNIE-Health (Zhang et al., 2019), a language model (LM) based
on ERNIE pre-trained on 126.9G biomedical Chinese dataset,
including medical dialogues, scientific articles on medicine and

(a) (b) (c)

Fig. 3. Pie chart for number of entity categories (a), and bar chart (b) and heat-map (c) for the number and locations of dialogue acts, respectively. Note that, we exclude cat-

egory other in the statistics of dialogue acts.

Table 2. Statistics of symptoms and symptom labels

Self-report Dialogue (POS/NEG/NS) Total

# of Symptoms 1.7 4.0/1.6/1.0 8.3

Table 3. List of notations for task formalization

Sign Description Dimension

D The set of all diseases 10

B The set of all BIO tags for named entities 11

A The set of all dialogue act categories 16

S The set of all normalized symptom names 331

L The set of symptom labels 3

V Vocabulary of source and target tokens 3138

Note: The dimension column denotes the size of the set represented by

these notations in our task settings. There are three elements in L, namely

POS, NEG and NS.
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healthcare, electronic medical records and electronic textbooks on
medicine and clinical pathology.

For evaluation, we report token-level metrics, including preci-
sion (P), recall (R) and F1 score (F1).

Experimental results: In Table 4, we present the experimental results
of the NER task. All baselines achieve F1 scores around 90%.
Among them, ERNIE-Health has the highest precision and F1 score,
while LEBERT performs best on recall. The domain-specific LMs
demonstrate a weak advantage over the generic domain LMs. The
decent performance of the metrics shows that the NER task for med-
ical dialogue is highly feasible in our settings.

5.2 Dialogue act classification
Task formalization: Dialogue act (DA) directly reflects the fine-
grained intention of the speaker. Formally, the goal of DAC task is
to identify the DA category of each utterance, i.e. to predict the DA
label ai 2 A for each utterance xi.

Experimental settings: DAC is a typical text classification task.
Baseline models include non-pre-trained models: TextCNN (Chen,
2015), TextRNN (Liu et al., 2016), TextRCNN (Lai et al., 2015)
and DPCNN (Johnson and Zhang, 2017), generic domain pre-
trained models: BERT (Devlin et al., 2019) and ERNIE (Zhang
et al., 2019) and biomedical pre-trained models: MC-BERT (Zhang
et al., 2022) and ERNIE-Health (Zhang et al., 2019).

We report four metrics for evaluations, including precision (P),
recall (R), F1 score (F1) and accuracy (Acc).

Experimental results: From the results in Table 5, it can be seen that
the pre-trained model has obvious advantages over the traditional
neural models in DAC task, and the benefits brought by the domain
specific models are slightly weak. The ERNIE-Health model
achieves the best results in the classification task, with the classifica-
tion accuracy of 82.37% achieved. The performance of MC-BERT
is not as expected both in NER and DAC task, which may be related
to the size and distribution of pre-training data.

5.3 Symptom label inference
Symptom features are the key information to describe the patient’s
health condition and also the structured training data required for
DDP task. The goal of the SLI task is to identify the patient’s symp-
tom features from the self-report and the dialogue, and it consists of
two cognate sub-tasks: SLI-EXP and SLI-IMP.

Task formalization: The SLI-EXP task aims to find out the patient’s
self-provided symptoms in self-report x0, which is called explicit
symptoms, denoted by fs1; . . . ; skg, where si 2 S. In the contrast, the
SLI-IMP task aims to find the symptoms and the corresponding
labels in the dialogue X, which is called implicit symptoms, denoted
by fðskþ1; lkþ1Þ; . . . ; ðsn; lnÞg, where sj 2 S and lj 2 L. Compared

with the SLI-EXP task, the SLI-IMP task not only needs to identify
symptoms, but also predicts the labels of symptoms. We do not need
to predict symptom labels in the SLI-EXP task because symptoms in
self-report are always positive.

Experimental settings: We treat the SLI task as a multi-label classifi-
cation (MLC) problem, where the label space is S for SLI-EXP task
and S � L for SLI-IMP task. We use BERT (Devlin et al., 2019) and
MC-BERT (Zhang et al., 2022) as the encoder and obtain the latent
vector of the self-report or the entire conversation, which is then
mapped into the label space using an MLP layer. The training objec-
tives are the binary Cross-Entropy loss between sigmoid activations
of MLP outputs and actual labels. The model is denoted as BERT-
MLC and MC-BERT-MLC.

For SLI-IMP task, we additionally propose a multi-task learning
(MTL)-based model (Zhang and Yang, 2018b) called BERT-MTL (or
MC-BERT-MTL) that can utilize the BIO labels in NER during train-
ing. BERT-MTL has three additional MLP layers on top of BERT
(Devlin et al., 2019). The role of these three MLP layers is to predict
the BIO label of each token, the normalized name of each symptom en-
tity and the label of each symptom entity. For the first MLP, the input
is the hidden vector of each token obtained by BERT encoder, and for
the latter two MLPs, the input is the average hidden vector of each
symptom entity. The output label space of the three MLP layers are
B; S and L, respectively. The three objectives are trained simultaneous-
ly to push the hidden vector of symptom entities to contain more con-
textual information. We provide the structure diagram of BERT-MTL
model in the Supplementary Material.

We evaluate symptom recognition and symptom inference separ-
ately. For the evaluation of symptom recognition, we only focus on
whether the mentioned symptom entities are found and the

Table 4. Experimental results for medical NER task

Models P " R " F1 "

Lattice LSTM (Zhang and Yang,

2018a)

89.37 90.84 90.10

BERT-CRF (Devlin et al., 2019) 88.46 92.35 90.37

ERNIE (Zhang et al., 2019) 88.87 92.27 90.53

FLAT (Li et al., 2020) 88.76 92.07 90.38

LEBERT (Liu et al., 2021) 86.53 92.91 89.60

MC-BERT (Zhang et al., 2022) 88.92 92.18 90.52

ERNIE-Health (Zhang et al.,

2019)

89.71 2.82 91.24

Note: The up arrows and down arrows indicate that the higher the better

and the lower the better for the number in the column, respectively. All the

numbers are percentage values, with the highest value highlighted. It is the

same for other tables of experimental results.

All the boldface values in Table are significantly at the 5% significance

level.

Table 5. Experimental results for DAC task

Models P " R " F1 " Acc "

TextCNN (Chen, 2015) 74.02 70.92 72.22 78.99

TextRNN (Liu et al., 2016) 73.07 69.88 70.96 78.53

TextRCNN (Lai et al.,

2015)

73.82 72.53 72.89 79.40

DPCNN (Johnson and

Zhang, 2017)

74.30 69.45 71.28 78.75

BERT (Devlin et al., 2019) 75.35 77.16 76.14 81.62

ERNIE (Zhang et al., 2019) 76.18 77.33 76.67 82.19

MC-BERT (Zhang et al.,

2022)

75.03 77.09 75.94 81.54

ERNIE-Health (Zhang

et al., 2019)

75.81 77.85 76.71 82.37

All the boldface values in Table are significantly at the 5% significance

level.

Table 6. Experimental results of symptom recognition in SLI-EXP

and SLI-IMP task

Task Models Example level Label level

SA " HL # HS " P " R " F1 "

SLI-EXP BERT-MLC 73.24 10.10 84.58 86.33 93.14 89.60

MC-BERT-MLC 75.34 9.31 85.10 88.47 92.72 90.54

SLI-IMP BERT-MLC 34.16 39.52 82.22 84.98 94.81 89.63

MC-BERT-MLC 35.14 37.84 82.78 85.41 95.26 90.07

BERT-MTL 37.24 35.32 84.49 96.05 87.04 91.62

MC-BERT-MTL 37.48 34.98 85.34 95.68 87.56 91.44

Note: The value of hamming loss (HL) is multiplied by 1e4.

All the boldface values in Table are significantly at the 5% significance

level.
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symptom labels are ignored. We report two categories of metrics for
MLC, including subset accuracy (SA), hamming loss (HL) and ham-
ming score (HS) in example-based metrics, and precision (P), recall
(R) and F1-score (F1) in label-based metrics (Zhang and Zhou,
2014). For symptom inference, we report the macro F1 score (F1)
only for those entities that are correctly predicted, F1 scores for each
symptom label (POS, NEG and NS) are also reported.

Experimental results: The performance of the SLI task is listed in
Tables 6 and 7. For symptom recognition, the performance of SA
shows that the strict prediction of symptoms is very challenging, es-
pecially for implicit symptoms from the entire dialogue (only about
37%). It is probably due to the exponential growth of the prediction
space, as up to dozens of symptoms can be mentioned in a single dia-
logue. In non-strict cases, both SLI-EXP and SLI-IMP tasks can
achieve good performance, with label-level F1 scores reach about
90%. Moreover, the BERT-MTL model that utilizes BIO labels
obtains slight better performance in the symptom recognition in SLI-
IMP task, which is also intuitive. Compared with BERT, MC-BERT
has some weak advantages in symptom recognition.

For symptom inference in SLI-IMP task, MT-based models have
an obvious advantage in the identification for the NEG and NS cate-
gories of symptoms, while MC-BERT seems to have no positive ef-
fect. It can be seen that inferring the two categories of symptoms is
obviously harder than POS, since it often requires more contextual
information. Especially for the symptoms that appear in the doctor’s
utterances, it is likely that the patient’s response needs to be
observed and analyzed to determine the labels. The results suggest
that more efforts are needed to improve the symptom inference.

5.4 Medical report generation
Task formalization: The medical report is the summarized patient
profile according to the MCR. Formally, the MGR task aims to gen-
erate a piece of text R ¼ fr1; . . . ; rmg based on the self-report and
the dialogue, where ri 2 V.

Experimental settings: We treat the MGR task as a text-to-text gen-
eration problem. The baseline models include: (i) Seq2seq (Nallapati
et al., 2016), a LSTM-based encoder–decoder model with attention
mechanism; (ii) Pointer-Generator (PG) (See et al., 2017), an
improved Seq2Seq model that allows tokens from the source to be
directly copied during decoding; (iii) Transformer (Vaswani et al.,
2017), the basic model most commonly used in pre-training that
based solely on attention mechanisms; (iv) T5 (Xue et al., 2021), a
unified Text-to-Text Transformer pre-trained on large text corpus;
(v) ProphetNet (Qi et al., 2021), a large-scale pre-trained generative
Transformer based on future prediction strategies; and (vi) Bio-
ProphetNet, a biomedical generative LM based on ProphetNet that
we pre-train on the MedDialog dataset.

We measure model performance on standard metrics of ROUGE
scores (Lin, 2004) that widely used for evaluating automatic sum-
marization task, including ROUGE-1/2/L (R-1/2/L). Besides, we
also report Concept F1 score (C-F1) (Joshi et al., 2020) to measure
the model’s effectiveness in capturing the medical concepts that are
of importance, and Regex-based Diagnostic Accuracy (RD-Acc), to
measure the model’s ability to judge the disease. To compute C-F1,
we use the medical entity extractor (BERT-CRF) trained in our NER
task to match entities in the predicted summary to the gold sum-
mary, where medical entities in the predicted summary that are not
present in the original medical report would be false positives and

vice versa for false negatives. For RD-Acc, we use the same regex-
based approach mentioned in Section 4.3.

Experimental results: The results in Table 8 illustrate that pre-
trained generative models can improve the ROUGE scores of medic-
al reports, but the improved R-2 score compared to PG is quite lim-
ited. The improvement of the C-F1 score implies a stronger ability
of the pre-trained model to capture medical concepts in the dia-
logue. Despite a high score on Rouge, T5 performs mediocrely on
D-Acc. Overall, ProphetNet (Qi et al., 2021) has the best perform-
ance, which may benefit from the pre-training on large-scale
Chinese corpus and the future prediction strategies during decoding.
Although pre-trained models improve the fluency of the generated
texts, there are still great challenges in scenarios that are highly de-
pendent on knowledge and reasoning.

5.5 Diagnosis-oriented dialogue policy
Task formalization: Different from the above tasks, the DDP task is
dynamic task that requires interaction with the patient simulator P.
Given the patient’s explicit symptoms, the goal of the DDP task is to
collect the patient’s implicit symptoms and predict the disease, with-
in a given maximum number of interactions with P.

In this article, the patient simulator P follows the design of Wei
et al. (2018). It can be treated as a function, given the patient’s id,
and any symptom s 2 S as input, P can output the patient’s symp-
tom label. An Unknown (UNK) label will be returned if the symp-
tom s do not appear in the dialogue.

More specifically, the agent asks P for one symptom at each
step, and after receiving a feedback, asks the next symptom, and
repeating above for several turns, until the agent obtains enough in-
formation to make diagnosis.

The patient simulator can be designed to be more practical, i.e.
the input and output are both natural language texts. In this case,
we need a language transmitter to generate the text that conveys the
semantics of the action selected by the agent, and a language inter-
preter based on the proposed understanding framework to parse the
patient’s response. This situation is one of our future research direc-
tions, but it is beyond the scope of this article since our DDP task
focuses on policy learning with structured data.

Experimental settings: Baseline models include DQN (Wei et al.,
2018), KR-DQN (Xu et al., 2019), REFUEL (Kao et al., 2018),
GAMP (Xia et al., 2020) and HRL (Zhong et al., 2022). Except for
GAMP, all other methods are based on reinforcement learning (RL).
In RL settings, at each turn of interaction, the agent chooses an ac-
tion from the joint action space of all symptoms and diseases, and
correct symptom queries and disease diagnoses are positively
rewarded, then the policy can be learned by maximizing the empiric-
al expected cumulative reward. In the contrast, GAMP is a GAN-
based method that uses the GAN network to avoid generating
randomized trials of symptom, and adds mutual information to en-
courage the model to select the most discriminative symptoms. We

Table 7. Experimental results of symptom inference in SLI-IMP task

Task Models POS NEG NS F1

SLI-IMP BERT-MLC 81.25 46.53 59.14 62.31

MC-BERT-MLC 80.80 41.30 58.15 60.08

BERT-MTL 79.64 53.87 60.20 64.57

MC-BERT-MTL 80.42 53.15 59.74 64.27

All the boldface values in Table are significantly at the 5% significance

level.

Table 8. Experimental results for MRG task

Models R-1 " R-2 " R-L " C-F1 " RD-Acc "

Seq2seq (Nallapati

et al., 2016)

54.15 38.86 50.89 35.46 39.33

PG (See et al., 2017) 57.27 43.41 53.64 43.51 53.51

Transformer

(Vaswani et al.,

2017)

53.99 39.38 49.78 37.19 45.75

T5 (Xue et al., 2021) 60.97 44.18 57.63 47.35 49.32

ProphetNet (Qi et al.,

2021)

60.48 45.73 56.41 49.48 61.90

Bio-ProphetNet 61.83 47.12 57.48 50.12 61.15

All the boldface values in Table are significantly at the 5% significance

level.
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set the maximum number of interactions between all agents and the
patient simulator to 10.

Ideally, if the agent collects all the implicit symptoms, the disease
classifier can utilize all the symptom features of the patient. In this
case, the performance of disease classification is intuitively the best.
We train support vector machine (SVM) (Noble, 2006) classifier
with the complete symptoms (both explicit and implicit symptoms),
and call the model upper-bound-SVM (UB-SVM). It is an invalid
static agent, but its performance can provide a certain reference for
dynamic agents.

To evaluate the agent, we report three most concerned metrics,
namely symptom recall (SX-Rec), diagnostic accuracy (DX-Acc) and
average number of turns (# Turns). Symptom recall measures the
agent’s ability to find implicit symptoms of the patient, diagnostic
accuracy measures the agent’s ability in disease classification and
average number of turns indicates the efficiency of the diagnostic
process.

Experimental results: From the results in Table 9, HRL obtains the
best symptom recall and diagnostic accuracy compared to other
baselines, with an acceptable average number of turns. HRL groups
diseases and works in a combination of master and multiple work-
ers, which is more in line with the actual medical division of labor.
However, the symptom recall and diagnostic accuracy of existing
models are still far from acceptable levels. It is worth noting that the
SVM-UB model can achieve a diagnostic accuracy of 70%, suggest-
ing that the performance of dynamic agents can be expected to be
improved if the agents are able to find more implicit symptoms.

6 Conclusions

In this article, we propose a design of frameworks and tasks for
automatic medical consultation system to support both static and
dynamic medical scenarios. We introduce a new medical dialogue
dataset called IMCS-21 with multi-level fine-grained annotations
and establish five tasks under the proposed framework. We develop
widely used neural-based models for each task and demonstrate ex-
perimental results to give an insight about the performance of differ-
ent tasks. The experimental results show that the validity and
potential of the corpus make it expected to be an important bench-
mark for automated medical consultation systems.
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