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Abstract

Cross-domain sentiment analysis is currently a hot topic in both the research and industrial
areas. One of the most popular framework for the task is domain-invariant representation
learning (DIRL), which aims to learn a distribution-invariant feature representation across
domains. However, in this work, we find out that applying DIRL may degrade the cross-domain
performance when the label distribution P(Y) changes across domains. To address this problem,
we propose a modification to DIRL, obtaining a novel weighted domain-invariant representation
learning (WDIRL) framework. We show that it is easy to transfer existing models from the DIRL
framework to the WDIRL framework. Empirical studies on extensive cross-domain sentiment
analysis tasks verified our statements and showed the effectiveness of our proposed solution.

1 Introduction

Sentiment analysis aims to predict sentiment polarity of user-generated data with emotional orientation
like movie reviews. The exponentially increase of online reviews makes it an interesting topic in research
and industrial areas. However, reviews can span so many different domains and the collection and pre-
processing of large amounts of data for new domains is often time-consuming and expensive. Therefore,
cross-domain sentiment analysis is currently a hot topic, which aims to transfer knowledge from a label-
rich source domain (S) to the label-few target domain (T).

In recent years, one of the most popular frameworks for cross-domain sentiment analysis is domain
invariant representation learning (DIRL) (Glorot et al., 2011; Fernando et al., 2013; Ganin et al., 2016;
Zellinger et al., 2017). Methods of the DIRL framework follow the idea of extracting a domain-invariant
feature representation, in which the data distributions of the source and target domains are similar. Based
on the resultant representations, they learn the supervised classifier using source rich labeled data. The
main difference among these methods is the applied technique to force the feature representations to be
domain-invariant.

However, in this work, we discover that applying DIRL may degrade the cross-domain performance
in the situation that the label distribution P(Y) shifts across domains. Specifically, let X and Y denote
the input and label random variable, respectively, and G(X) denote the feature representation of X. We
found out that when P(Y) changes across domains while P(X|Y) stays the same, forcing G(X) to be
domain-invariant will make G(X) uninformative to Y. This will, in turn, harm the generation of the
supervised classifier to the target domain. In addition, for the more general condition that both P(Y)
and P(X|Y) shift across domains, we deduced a conflict between the object of making the classification
error small and that of making G(X) domain-invariant.

We argue that the problem is worthy of studying since the shift of P(Y) exists in many real-world
cross-domain sentiment analysis tasks (Glorot et al., 2011). For example, the marginal distribution of
the sentiment of a product can be affected by the overall social environment and change in different time
periods; and for different products, their marginal distributions of the sentiment are naturally considered
different. Moreover, there are many factors, such as the original data distribution, data collection time,
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and data clearing method, that can affect P(Y) of the collected target domain unlabeled dataset. Note
that in the real-world cross-domain tasks, we do not know the labels of the collected target domain data.
Thus, we cannot previously align its label distribution PT(Y) with that of source domain labeled data
PS(Y), as done in many previous works (Glorot et al., 2011; Ganin et al., 2016; Tzeng et al., 2017; Li et
al., 2017; He et al., 2018; Peng et al., 2018; Li et al., 2019; Wu et al., 2019).

To address the problem of DIRL resulted from the shift of P(Y), we propose a modification to DIRL,
obtaining a weighted domain-invariant representation learning (WDIRL) framework. This framework
additionally introduces a class weight w to weigh source domain examples by class, hoping to make
P(Y) of the weighted source domain close to that of the target domain. Based on w, it resolves domain
shift in two steps. In the first step, it forces the marginal distribution P(X) to be domain-invariant between
the target domain and the weighted source domain instead of the original source, obtaining a supervised
classifier PS(Y|X; Φ) and a class weight w. In the second step, it resolves the shift of P(Y|X) by
adjusting PS(Y|X; Φ) usingw for label prediction in the target domain. We detail these two steps in §4.
Moreover, we will illustrate how to transfer existing DIRL models to their WDIRL counterparts, taking
the representative metric-based CMD model (Zellinger et al., 2017) and the adversarial-learning-based
DANN model (Ganin et al., 2016) as an example, respectively.

The contribution of this work is three-folder: (1) We theoretically and empirically analyse the problem
of DIRL for domain adaptation when the marginal distribution P(Y) shifts across domains. (2) We
proposed a novel method to address the problem of DIRL and show how to modify existing DIRL models.
(3) Experimental studies on extensive cross-domain sentiment analysis tasks show that the modified
versions of two representative DIRL models can greatly outperform their original DIRL versions when
label shift occurs.

2 Preliminary and Related Work

2.1 Domain Adaptation

For expression consistency, in this work, we consider domain adaptation in the unsupervised setting
(however, we argue that our analysis and solution also applies to the supervised and semi-supervised
domain adaptation settings). In the unsupervised domain adaptation setting, there are two different
distributions over X × Y: the source domain PS(X,Y) and the target domain PT(X,Y). And there
is a labeled data set DS drawn i.i.d from PS(X,Y) and an unlabeled data set DT drawn i.i.d. from the
marginal distribution PT(X):

DS = {(xi, yi)}ni=1 ∼ PS(X,Y),DT = {xi}Ni=n+1 ∼ PT(X).

The goal of domain adaptation is to build a classier f : X → Y that has good performance in the target
domain using DS and DT .

For this purpose, many approaches have been proposed from different views, such as instance
reweighting (Mansour et al., 2009), pivot-based information passing (Blitzer et al., 2007), spectral
feature alignment (Pan et al., 2010) subsampling (Chen et al., 2011), and of course the domain-invariant
representation learning (Pan et al., 2011; Gopalan et al., 2011; Long et al., 2013; Muandet et al., 2013;
Yosinski et al., 2014; Long et al., 2015; Aljundi et al., 2015; Wei et al., 2016; Bousmalis et al., 2016;
Pinheiro and Element, 2018; Zhao et al., 2018).

2.2 Domain Invariant Representation Learning

Domain invariant representation learning (DIRL) is a very popular framework for performing domain
adaptation in the cross-domain sentiment analysis field (Ghifary et al., 2014; Li et al., 2017; Chen et al.,
2018; Peng et al., 2018). It is heavily motivated by the following theorem (Ben-David et al., 2007).

Theorem 1. For a hypothesis h,

LT (h) ≤ LS(h) + d1(PS(X),PT(X)) + min{Ex∼PS
[|PS(y|x)− PT(y|x)|] ,

Ex∼PT
[|PS(y|x)− PT(y|x)|]},

(1)



Here, LS(h) denotes the expected loss with hypothesis h in the source domain, LT (h) denotes the
counterpart in the target domain, d1 is a measure of divergence between two distributions.

Based on Theorem 1 and assuming that performing feature transform on X will not increase the
values of the first and third terms of the right side of Ineq. (1), methods of the DIRL framework
apply a feature map G onto X, hoping to obtain a feature representation G(X) that has a lower value
of d1(PS(G(X)),PT(G(X))). To this end, different methods have been proposed. These methods can
be roughly divided into two directions. The first direction is to design a differentiable metric to explicitly
evaluate the discrepancy between two distributions. We call methods of this direction as the metric-
based DIRL methods. A representative work of this direction is the center-momentum-based model
proposed by zellinger2017central. In that work, they proposed a central moment discrepancy metric
(CMD) to evaluate the discrepancy between two distributions. Specifically, let denote XS and XT an M
dimensional random vector on the compact interval [a; b]M over distribution PS and PT, respectively.
The CMD loss between PS and PT is defined by:

CMDK(XS,XT) =
1

|b− a|
‖ E(XS)− E(XT) ‖2 +

1

|b− a|k
K∑

k=2

‖ Ck(XS)− Ck(XT) ‖2 . (2)

Here, E(X) denotes the expectation of X over distribution PS(X), and

Ck(X) =

(
E(

M∏
i=1

(Xi − E(Xi))
ri

)
ri≥0,

∑M
i ri=k

,

is the k-th momentum, where Xi denotes the ith dimensional variable of X.
The second direction is to perform adversarial training between the feature generator G and a domain

discriminator D. We call methods of this direction as the adversarial-learning-based methods. As a
representative, ganin2016domain trained D to distinguish the domain of a given example x based on
its representation G(x). At the same time, they encouraged G to deceive D, i.e., to make D unable to
distinguish the domain of x. More specifically, D was trained to minimize the loss:

Ld = Ex∼PS(X)

[
log

1

D(G(x))

]
+ Ex∼PT(X)

[
log

1

1−D(G(x))

]
(3)

over its trainable parameters, while in contrast G was trained to maximize Ld. According to the work
of Goodfellow2014Generative, this is equivalent to minimize the Jensen-shannon divergence (Amari et
al., 1987; Lin, 1991) JSD(PS,PT) between PS(G(X)) and PT(G(X)) over G. Here, for a concise
expression, we write P as the shorthand for P(G(X)).

The task loss is the combination of the supervised learning lossLsup and the domain-invariant learning
loss Linv, which are defined on DS only and on the combination of DS and DT , respectively:

L = Lsup(DS) + αLinv(DS ,DT ). (4)

Here, α is a hyper-parameter for loss balance, and the aforementioned domain adversarial loss
JSD(PS,PT) and CMDK are two concrete forms of Linv.

3 Problem of Domain-Invariant Representation Learning

In this work, we found out that applying DIRL may harm domain adaptation in the situation that P(Y)
shifts across domains. Specifically, when PS(Y) differs from PT(Y), forcing the feature representations
G(X) to be domain-invariant may increase the value of LS(h) in Ineq. (1) and consequently increase the
value of LT (h), which means the decrease of target domain performance. In the following, we start our
analysis under the condition that PS(X|Y) = PT(X|Y). Then, we consider the more general condition
that PS(X|Y) also differs from PT(X|Y).

First, when PS(X|Y) = PT(X|Y), we have the following theorem.



Lemma 2. Given PS(X|Y) = PT(X|Y), if PS(Y = i) 6= PT(Y = i) and a feature map G makes
PS (G(X)) = PT(G(X)), then PS(Y = i|G(X)) = PS(Y = i).

Proof. Proofs appear in Appendix A.

Remark. According to Theorem 2, we know that when PS(X|Y) = PT(X|Y) and PS(Y = i) 6=
PT(Y = i), forcing G(X) to be domain-invariant inclines to make data of class i mix with data of other
classes in the space of G(X). This will make it difficult for the supervised classifier to distinguish inputs
of class i from inputs of the other classes. Think about such an extreme case that every instance x is
mapped to a consistent point g0 in G(X). In this case, PS(G(X) = g0) = PT(G(X) = g0) = 1.
Therefore, G(X) is domain-invariant. As a result, the supervised classifier will assign the label y∗ =
arg maxy PS(Y = y) to all input examples. This is definitely unacceptable. To give a more intuitive
illustration of the above analysis, we offer several empirical studies on Theorem 2 in Appendix B.

In addition, when PS(Y) 6= PT(Y) and PS(X|Y) 6= PT(X|Y), we did not obtain such a strong
conclusion as Theorem 2. Instead, we deduced a conflict between the object of achieving superior
classification performance and that of making features domain-invariant.

Specifically, suppose that PS(Y = i) 6= PT(Y = i) and instances of class i are completely
distinguishable from instances of the rest classes in G(X), i.e.,:

P(G(X = x)|Y = i) > 0⇒ P(G(X = x)|Y 6= i) = 0,

P(G(X = x)|Y 6= i) > 0⇒ P(G(X = x)|Y = i) = 0.

In DIRL, we hope that:

L∑
i=1

PS(G(X)|Y = i)PS(Y = i) =
L∑
i=1

PT(G(X)|Y = i)PT(Y = i).

Consider the region x ∈ Xi, where P(G(X = x)|Y = i) > 0. According to the above assumption, we
know that P(G(X = x ∈ Xi)|Y 6= i) = 0. Therefore, applying DIRL will force

PS(G(X = x)|Y = i)PS(Y = i) = PT(G(X = x)|Y = i)PT(Y = i),

in region x ∈ Xi. Taking the integral of x over Xi for both sides of the equation, we have PS(Y = i) =
PT(Y = i). This deduction contradicts with the setting that PS(Y = i) 6= PT(Y = i). Therefore, G(X)
is impossible fully class-separable when it is domain-invariant. Note that the object of the supervised
learning is exactly to make G(X) class-separable. Thus, this actually indicates a conflict between the
supervised learning and the domain-invariant representation learning.

Based on the above analysis, we can conclude that
It is impossible to obtain a feature representation G(X) that is class-separable and at the same time,

domain-invariant using the DIRL framework, when P(Y) shifts across domains.
However, the shift of P(Y) can exist in many cross-domain sentiment analysis tasks. Therefore, it is

worthy of studying in order to deal with the problem of DIRL.

4 Weighted Domain Invariant Representation Learning

According to the above analysis, we proposed a weighted version of DIRL to address the problem caused
by the shift of P(Y) to DIRL. The key idea of this framework is to first align P(Y) across domains before
performing domain-invariant learning, and then take account the shift of P(Y) in the label prediction
procedure. Specifically, it introduces a class weightw to weigh source domain examples by class. Based
on the weighted source domain, the domain shift problem is resolved in two steps. In the first step, it
applies DIRL on the target domain and the weighted source domain, aiming to alleviate the influence of
the shift of P(Y) during the alignment of P(X|Y). In the second step, it usesw to reweigh the supervised
classifier PS(Y|X) obtained in the first step for target domain label prediction. We detail these two steps
in §4.1 and §4.2, respectively.



4.1 Align P(X|Y) with Class Weight
The motivation behind this practice is to adjust data distribution of the source domain or the target domain
to alleviate the shift of P(Y) across domains before applying DIRL. Consider that we only have labels of
source domain data, we choose to adjust data distribution of the source domain. To achieve this purpose,
we introduce a trainable class weight w to reweigh source domain examples by class when performing
DIRL, with wi > 0. Specifically, we hope that:

wiPS(Y = i) = PT(Y = i),

and we denote w∗ the value of w that makes this equation hold. We shall see that when w = w∗,
DIRL is to align PS(G(X)|Y) with PT(G(X)|Y) without the shift of P(Y). According to our analysis,
we know that due to the shift of P(Y), there is a conflict between the training objects of the supervised
learning Lsup and the domain-invariant learning Linv. And the conflict degree will decrease as PS(Y)
getting close to PT(Y). Therefore, during model training, w is expected to be optimized toward w∗

since it will make P(Y) of the weighted source domain close to PT(Y), so as to solve the conflict.
We now show how to transfer existing DIRL models to their WDIRL counterparts with the above idea.

Let S : P → R denote a statistic function defined over a distribution P. For example, the expectation
function E(X) in E(XS) ≡ E(X)(PS(X)) is a concrete instaintiation of S. In general, to transfer models
from DIRL to WDIRL, we should replace S(PS(X)) defined in Linv with

P̂S(X) =
L∑
i=1

wiPS(Y = i)S(PS(X|Y = i)),

s.t.,wi > 0,
L∑
i=1

wiPS(Y = i) = 1.

Take the CMD metric as an example. In WDIRL, the revised form of CMDK is defined by:

ĈMDK(XS,XT) =
1

|b− a|
‖

L∑
i=1

wiPS(Y = i)E(XS|YS = i)− E(XT) ‖2

+
1

|b− a|k
K∑
k=2

‖
L∑
i=1

wiPS(Y = i)Ck(XS|YS = i)− Ck(XT) ‖2,

s.t.,wi > 0,
L∑
i=1

wiPS(Y = i) = 1.

(5)

Here, E(XS|YS = i) ≡ E(X)(PS(X|Y = i)) denotes the expectation of X over distribution PS(X|Y =
i). Note that both PS(Y = i) and E(XS|YS = i) can be estimated using source labeled data, and E(XT)
can be estimated using target unlabeled data.

As for those adversarial-learning-based DIRL methods, e.g., DANN (Ganin et al., 2016), the revised
domain-invariant loss can be precisely defined by:

L̂d =
L∑
i=1

wiPS(Y = i)Ex∼PS(X|Y = i)

[
log

1

D(G(x))

]
+ Ex∼PT(X)

[
log

1

1−D(G(x))

]
,

s.t.,wi > 0,

L∑
i=1

wiPS(Y = i) = 1.

(6)

During model training, D is optimized in the direction to minimize L̂d, while G and w are optimized
to maximize L̂d. In the following, we denote ĴSD(PS,PT) the equivalent loss defined over G for the
revised version of domain adversarial learning.



The general task loss in WDIRL is defined by:

L̂ = Lsup(DS) + αL̂inv(DS ,DT ), (7)

where L̂inv is a unified representation of the domain-invariant loss in WDIRL, such as ĈMDK and
ĴSD(PS,PT).

4.2 Align P(Y|X) with Class Weight
In the above step, we align P(X|Y) across domains by performing domain-invariant learning on the
class-weighted source domain and the original target domain. In this step, we deal with the shift of
P(Y). Suppose that we have successfully resolved the shift of P(X|Y) with G, i.e., PS(G(X)|Y) =
PT(G(X)|Y). Then, according to the work of (Chan and Ng, 2005), we have:

PT(Y = i|G(X)) =
γ(Y = i)PS(Y = i|G(X))∑L
j=1 γ(Y = j)PS(Y = j|G(X))

, (8)

where γ(Y = i) = PT(Y = i)/PS(Y = i). Of course, in most of the real-world tasks, we do not know
the value of γ(Y = i). However, note that γ(Y = i) is exactly the expected class weight w∗i . Therefore,
a natural practice of this step is to estimate γ(Y = i) with the obtained wi in the first step and estimate
PT(Y|G(X)) with:

PT(Y = i|G(X))← wiPS(Y = i|G(X))∑L
j=1 wjPS(Y = j|G(X))

. (9)

In summary, to transfer methods of the DIRL paradigm to WDIRL, we should: first revise the
definition of Linv, obtaining its corresponding WDIRL form L̂inv; then perform supervised learning
and domain-invariant representation learning onDS andDT according to Eq. (7), obtaining a supervised
classifier PS(Y|X; Φ) and a class weight vectorw; and finally, adjust PS(Y|X; Φ) usingw according to
Eq. (9) and obtain the target domain classifier PT(Y|X; Φ).

5 Experiment

5.1 Compared Methods
To perform the empirical study, we carried out performance comparison between the following models:

• SO: the source-only model trained using source domain labeled data without any domain adaptation.

• CMD: the centre-momentum-based domain adaptation model (Zellinger et al., 2017) of the original
DIRL framework that implements Linv with CMDK .

• DANN: the adversarial-learning-based domain adaptation model (Ganin et al., 2016) of the original
DIRL framework that implements Linv with JSD(PS,PT).

• CMD†: the weighted version of the CMD model that only applies the first step (described in §4.1)
of our proposed method.

• DANN†: the weighted version of the DANN model that only applies the first step of our proposed
method.

• CMD††: the weighted version of the CMD model that applies both the first and second (described
in §4.2) steps of our proposed method.

• DANN††: the weighted version of the DANN model that applies both the first and second steps of
our proposed method.

• CMD∗: a variant of CMD†† that assigns w∗ (estimate from target labeled data) to w and fixes this
value during model training.



S→T SO CMD CMD† CMD†† CMD∗ DANN DANN† DANN†† DANN∗

B→D 83.52 ± 0.20 79.18 ± 0.28 82.01 ± 0.54 83.89 ± 0.65 84.83 ± 0.05 80.47 ± 0.52 84.53 ± 0.52 84.60 ± 0.18 84.33 ± 0.15
B→E 81.83 ± 0.06 78.11 ± 0.19 84.02 ± 0.37 84.01 ± 0.45 84.26 ± 0.09 76.26 ± 1.16 84.75 ± 0.44 83.91 ± 0.58 83.71 ± 0.60
B→K 82.72 ± 0.02 80.19 ± 0.12 83.91 ± 0.24 85.49 ± 0.05 85.49 ± 0.06 79.66 ± 0.49 82.64 ± 0.59 83.32 ± 0.27 84.87 ± 0.41
D→B 82.97 ± 0.06 81.47 ± 0.38 83.20 ± 0.10 83.10 ± 0.12 83.11 ± 0.03 82.08 ± 0.97 83.10 ± 0.38 82.65 ± 0.08 82.05 ± 0.22
D→E 81.97 ± 0.07 80.35 ± 0.03 82.48 ± 0.29 83.47 ± 0.12 83.57 ± 0.03 78.75 ± 0.54 83.01 ± 0.44 83.29 ± 0.51 83.09 ± 0.48
D→K 83.51 ± 0.10 82.99 ± 0.22 86.94 ± 0.18 86.40 ± 0.23 86.34 ± 0.15 81.54 ± 0.70 85.05 ± 0.51 85.84 ± 0.71 86.06 ± 0.61
E→B 80.65 ± 0.11 78.09 ± 0.34 79.65 ± 0.40 81.35 ± 0.31 81.82 ± 0.07 78.94 ± 0.73 80.70 ± 0.94 81.63 ± 0.74 81.53 ± 0.33
E→D 80.25 ± 0.25 77.16 ± 1.99 80.07 ± 0.49 82.20 ± 0.17 81.85 ± 0.08 76.87 ± 0.50 79.73 ± 0.77 81.24 ± 0.47 82.04 ± 0.15
E→K 87.43 ± 0.06 83.76 ± 0.15 86.87 ± 0.28 88.68 ± 0.13 89.00 ± 0.02 84.37 ± 0.89 87.89 ± 0.28 88.31 ± 0.36 88.38 ± 0.31
K→B 80.05 ± 0.26 75.44 ± 0.37 81.00 ± 0.25 82.35 ± 0.16 82.34 ± 0.13 75.81 ± 0.21 80.97 ± 0.72 81.83 ± 0.32 81.13 ± 0.52
K→D 79.88 ± 0.13 73.52 ± 0.27 79.85 ± 0.15 83.58 ± 0.05 83.64 ± 0.06 74.27 ± 0.82 80.49 ± 0.07 83.11 ± 0.76 83.53 ± 0.10
K→E 87.30 ± 0.02 81.73 ± 0.46 87.80 ± 0.13 87.87 ± 0.04 88.04 ± 0.01 82.19 ± 0.00 87.52 ± 0.26 87.55 ± 0.18 87.80 ± 0.18

Ave 82.67 ± 0.11 79.33 ± 0.40 83.15 ± 0.37 84.36 ± 0.21 84.52 ± 0.07 79.42 ± 0.63 83.28 ± 0.49 83.32 ± 0.43 84.04 ± 0.34

Table 1: Mean accuracy ± standard deviation over five runs on the 12 binary-class cross-domain tasks.

• DANN∗: a variant of DANN†† that assigns w∗ to w and fixes this value during model training.

Intrinsically, SO can provide an empirical lowerbound for those domain adaptation methods. CMD∗

and DANN∗ can provide the empirical upbound of CMD†† and DANN††, respectively. In addition,
by comparing performance of CMD∗ and DANN∗ with that of SO, we can know the effectiveness of
the DIRL framework when P(Y) dose not shift across domains. By comparing CMD† with CMD, or
comparing DANN† with DANN, we can know the effectiveness of the first step of our proposed method.
By comparing CMD†† with CMD†, or comparing DANN†† with DANN†, we can know the impact of
the second step of our proposed method. And finally, by comparing CMD†† with CMD, or comparing
DANN†† with DANN, we can know the general effectiveness of our proposed solution.

5.2 Dataset and Task Design

We conducted experiments on the Amazon reviews dataset (Blitzer et al., 2007), which is a benchmark
dataset in the cross-domain sentiment analysis field. This dataset contains Amazon product reviews of
four different product domains: Books (B), DVD (D), Electronics (E), and Kitchen (K) appliances. Each
review is originally associated with a rating of 1-5 stars and is encoded in 5,000 dimensional feature
vectors of bag-of-words unigrams and bigrams.

Binary-Class. From this dataset, we constructed 12 binary-class cross-domain sentiment analysis
tasks: B→D, B→E, B→K, D→B, D→E, D→K, E→B, E→D, E→K, K→B, K→D, K→E. Following
the setting of previous works, we treated a reviews as class ‘1’ if it was ranked up to 3 stars, and as class
‘2’ if it was ranked 4 or 5 stars. For each task, DS consisted of 1,000 examples of each class, and DT

consists of 1500 examples of class ‘1’ and 500 examples of class ‘2’. In addition, since it is reasonable
to assume that DT can reveal the distribution of target domain data, we controlled the target domain
testing dataset to have the same class ratio as DT . Using the same label assigning mechanism, we also
studied model performance over different degrees of P(Y) shift, which was evaluated by the max value
of PS(Y = i)/PT(Y = i), ∀i = 1, · · · ,L. Please refer to Appendix C for more detail about the task
design for this study.

Multi-Class. We additionally constructed 12 multi-class cross-domain sentiment classification tasks.
Tasks were designed to distinguish reviews of 1 or 2 stars (class 1) from those of 4 stars (class 2) and
those of 5 stars (class 3). For each task, DS contained 1000 examples of each class, and DT consisted
of 500 examples of class 1, 1500 examples of class 2, and 1000 examples of class 3. Similarly, we also
controlled the target domain testing dataset to have the same class ratio as DT .
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Figure 1: Mean accuracy of WCMD†† over different initialization of w. The empirical optimum value
of w makes w1PS(Y = 1) = 0.75. The dot line in the same color denotes performance of the CMD
model and ‘w0’ annotates performance of WCMD†† when initializing w with w0.

5.3 Implementation Detail
For all studied models, we implemented G and f using the same architectures as those in (Zellinger
et al., 2017). For those DANN-based methods (i.e., DANN, DANN†, DANN††, and DANN∗), we
implemented the discriminator D using a 50 dimensional hidden layer with relu activation functions
and a linear classification layer. Hyper-parameter K of CMDK and ĈMDK was set to 5 as suggested
by zellinger2017central. Model optimization was performed using RmsProp (Tieleman and Hinton,
2012). Initial learning rate of w was set to 0.01, while that of other parameters was set to 0.005 for
all tasks. Hyper-parameter α was set to 1 for all of the tested models. We searched for this value in
range α = [1, · · · , 10] on task B→ K. Within the search, label distribution was set to be uniform, i.e.,
P(Y = i) = 1/L, for both domain B and K. We chose the value that maximize the performance of CMD
on testing data of domain K.

To initialize w, we used label prediction of the source-only model. Specifically, let PSO(Y|X;θSO)
denote the trained source-only model. We initialized wi by:

w0
i =

1
|DT |

∑
x∈DT

PSO(y = i|x;θSO)

1
|DS |

∑
y∈DS

I(y = i)
.

Here, I denotes the indication function. To offer an intuitive understanding to this strategy, we report
performance of WCMD†† over different initializations of w on 2 within-group (B→D, E→K) and 2
cross-group (B→K, D→E) binary-class domain adaptation tasks in Figure 1. Here, we say that domain
B and D are of a group, and domain E and K are of another group since B and D are similar, as are E and
K, but the two groups are different from one another (Blitzer et al., 2007). Note that PS(Y = 1) = 0.5
is a constant, which is estimated using source labeled data. From the figure, we can obtain three main
observations. First, WCMD†† generally outperformed its CMD counterparts with different initialization
of w. Second, it was better to initialize w with a relatively balanced value, i.e., wiPS(Y = i) → 1

L (in
this experiment, L = 2). Finally,w0 was often a good initialization ofw, indicating the effectiveness of
the above strategy.

5.4 Main Result
Table 1 shows model performance on the 12 binary-class cross-domain tasks. From this table, we can
obtain the following observations. First, CMD and DANN underperform the source-only model (SO) on
all of the 12 tested tasks, indicating that DIRL in the studied situation will degrade the domain adaptation
performance rather than improve it. This observation confirms our analysis. Second, CMD†† consistently



Model B→D B→K D→E E→K
SO 59.10 ± 0.83 60.77 ± 1.47 57.50 ± 0.67 66.13 ± 4.09
CMD 59.11 ± 0.70 60.35 ± 1.32 56.59 ± 1.00 62.78 ± 3.16
CMD† 59.16 ± 1.00 61.32 ± 1.67 58.32 ± 1.89 64.94 ± 3.91
CMD†† 60.69 ± 0.82 61.18 ± 1.84 60.12 ± 0.89 66.65 ± 3.77
CMD∗ 60.26 ± 0.76 61.77 ± 1.43 59.84 ± 0.84 66.42 ± 3.70
DANN 59.16 ± 0.60 61.85 ± 0.64 57.80 ± 0.32 65.50 ± 0.53
DANN† 60.07 ± 0.39 62.71 ± 0.34 59.97 ± 0.49 66.86 ± 3.23
DANN†† 59.32 ± 0.52 63.07 ± 0.51 58.95 ± 0.32 66.54 ± 3.24
DANN∗ 60.49 ± 0.17 62.90 ± 0.39 58.89 ± 0.37 66.45 ± 3.23

Table 2: Mean accuracy ± standard deviation over five runs on the 2 within-group and 2 cross-group
multi-class domain-adaptation tasks.
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Figure 2: Relative improvement over the SO baseline under different degrees of P(Y) shift on the B→D
and B→K binary-class domain adaptation tasks.

outperformed CMD and SO. This observation shows the effectiveness of our proposed method for
addressing the problem of the DIRL framework in the studied situation. Similar conclusion can also
be obtained by comparing performance of DANN†† with that of DANN and SO. Third, CMD† and
DANN† consistently outperformed CMD and DANN, respectively, which shows the effectiveness of the
first step of our proposed method. Finally, on most of the tested tasks, CMD†† and DANN†† outperforms
CMD† and DANN†, respectively.

Figure 5 depicts the relative improvement, e.g., (Acc(CMD) − Acc(SO))/Acc(SO), of the domain
adaptation methods over the SO baseline under different degrees of P(Y) shift, on two binary-class
domain adaptation tasks (You can refer to Appendix C for results of the other models on other tasks).
From the figure, we can see that the performance of CMD generally got worse as the increase of P(Y)
shift. In contrast, our proposed model CMD†† performed robustly to the varying of P(Y) shift degree.
Moreover, it can achieve the near upbound performance characterized by CMD∗. This again verified the
effectiveness of our solution.

Table 3 reports model performance on the 2 within-group (B→D, E→K) and the 2 cross-group
(B→K, D→E) multi-class domain adaptation tasks (You can refer to Appendix D for results on the
other tasks). From this table, we observe that on some tested tasks, CMD†† and DANN†† did not greatly
outperform or even slightly underperformed CMD† and DANN†, respectively. A possible explanation of
this phenomenon is that the distribution of DT also differs from that of the target domain testing dataset.
Therefore, the estimated or learned value ofw usingDT is not fully suitable for application to the testing
dataset. This explanation is verified by the observation that CMD† and DANN† also slightly outperforms
CMD∗ and DANN∗ on these tasks, respectively.

6 Conclusion

In this paper, we studied the problem of the popular domain-invariant representation learning (DIRL)
framework for domain adaptation, when P(Y) changes across domains. To address the problem,



we proposed a weighted version of DIRL (WDIRL). We showed that existing methods of the DIRL
framework can be easily transferred to our WDIRL framework. Extensive experimental studies on
benchmark cross-domain sentiment analysis datasets verified our analysis and showed the effectiveness
of our proposed solution.
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Figure 3: Data distribution in the mapped feature space when using different values of α = 0, 1, 10, 100.
”Neg” and ”Pos” in the legends denotes the class label, respectively. The dot line of each sub-figure is
the separating hyperplane of f .

A Proof of Theorem 2.

Theorem 2. Given PS(X|Y) = PT(X|Y), if PS(Y = i) 6= PT(Y = i) and a feature map G makes
PS (G(X)) = PT(G(X)), then PS(Y = i|G(X)) = PS(Y = i).

Proof. Let us first consider the binary classification situation. Since G makes PS (G(X)) = PT(G(X))
and PS(X|Y) = PT(X|Y), we have:

2∑
i=1

PS(G(X)|Y = i)PS(Y = i) =

2∑
i=1

PT(G(X)|Y = i)PT(Y = i), (10)

and
PS(G(X)|Y) = PT(G(X)|Y). (11)

Replacing PT(G(X)|Y) with PS(G(X)|Y) in Eq. (10), we have

PS(G(X)|Y = 2)

PS(G(X)|Y = 1)
=

PS(Y = 1)− PT(Y = 1)

PT(Y = 2)− PS(Y = 2)

=
(1− PS(Y = 2))− (1− PT(Y = 2))

PT(Y = 2)− PS(Y = 2)

= 1.

(12)

Therefore,

PS(Y = i|G(X)) =
PS(G(X)|Y = i)PS(Y = i)∑2
j=1 PS(G(X)|Y = j)PS(Y = j)

= PS(Y = i), ∀i = 1, 2.

(13)

This proof can be easily extended to the multi-class classification problem by treating class i as one class
and classes j = 1, · · · , L, j 6= i as another class in the binary classification problem, completing the
proof.

B Empirical Study on Theorem 2.

In this section, we empirically study Theorem 2. To perform the study, we first conducted experiments
on a dataset generated from the 2-dimensional mixture Gaussian distributions, with k = 2. In the source
domain, PS(Y = 1)/PS(Y = 2) = 1/2, while in the target domain, PT(Y = 1)/PT(Y = 2) = 2/1.
These two distributions share the conditional distribution X|(Y = 1) ∼ N(−212, I2),X|(Y = 2) ∼
N (212, I2), where 1 is a vector with all elements being 1. We implemented Linv with CMDK , and we
studied the performance of f in the target domain over different values of α.

Figure 3 shows distribution of source and target domain data in the mapped feature space (domain-
invariant space) when using different values of α. We can see from the figure, as the value of α increases,
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Figure 4: Model performance under the target shift condition on the two within-group and cross-group
binary-class cross-domain tasks.

data from difference classes inclines to mix with each other and finally converge to a single point in the
mapped feature space. We can also see that it indeed has a negative impact to source domain performance
when applying domain invariant learning under the target shift condition. These observations accord with
our theoretical analysis illustrated in Theorem 2.

We then verified the failure of the domain-invariant representation learning framework on 4 binary-
class cross-domain sentiment classification tasks designed on Amazon dataset: Btr → Bte,Dtr →
Dte,Etr → Ete,Ktr → Kte, where Btr denotes the training dataset as the source domain and Bte denotes
the testing dataset as the target domain. We implemented Linv with CMDK . For each task, the class
ratio of DS was set to 1:1, and that for DT was set to 3:1.

Figure 4 depicts performance of the CMD model on the four adaptation tasks using different weight
of α to perform domain-invariant learning. Note that α = 0 corresponds to the source-only model,
which does not force feature G(X) to be domain-invariant. From the figure, we can see that performance
of the CMD-based DIRL model on the tested tasks generally decreases as α increases. This verifies
our theoretical analysis that the supervised learning conflicts with the domain-invariant representation
learning, when the the label distribution shifts across domains.

C Influence of the P(Y) Shift Degree

In this section, we study the impact of the degree of P(Y) shift, evaluated by the max value of PS(Y =
i)/PT(Y = i),∀i = 1, · · · ,L, to the models. For this study, we conducted experiments on the 12 binary-
class cross-domain tasks. For each task, we set the source domain class ratio to be 1:1, and set the target
domain class ratio ranging 1 : i,∀i = 1, · · · , 10. We tested model performance on each setting. Figure
5 depicts the relative improvement of the CMD-based and DANN-based domain adaptation models over
the SO baseline under different degrees of P(Y) shift.

D Full Results on the 12 Multi-class Cross-domain Tasks

Table 3 reports model performance on the 12 multi-class cross-domain tasks.



S→T SO CMD CMD† CMD†† CMD∗ DANN DANN† DANN†† DANN∗

B→D 59.10 ± 0.83 59.11 ± 0.70 59.16 ± 1.00 60.69 ± 0.82 60.26 ± 0.76 59.16 ± 0.60 60.07 ± 0.39 59.32 ± 0.52 60.49 ± 0.17
B→E 58.84 ± 1.06 59.06 ± 0.97 59.44 ± 0.91 60.59 ± 0.85 61.46 ± 0.62 60.19 ± 0.33 61.65 ± 0.34 61.69 ± 0.14 60.78 ± 0.73
B→K 60.77 ± 1.47 60.35 ± 1.32 61.32 ± 1.67 61.18 ± 1.84 61.77 ± 1.43 61.85 ± 0.64 62.71 ± 0.34 63.07 ± 0.51 62.90 ± 0.39
D→B 60.69 ± 1.40 59.83 ± 0.77 62.10 ± 1.16 61.98 ± 1.48 62.18 ± 1.60 60.79 ± 0.78 62.29 ± 0.20 62.44 ± 0.49 62.65 ± 0.34
D→E 57.50 ± 0.67 56.59 ± 1.00 58.32 ± 1.89 60.12 ± 0.89 59.84 ± 0.84 57.80 ± 0.32 59.97 ± 0.49 58.95 ± 0.32 58.89 ± 0.37
D→K 59.65 ± 0.93 60.05 ± 0.66 61.30 ± 0.55 61.19 ± 0.32 59.16 ± 2.20 60.94 ± 0.83 60.95 ± 0.92 61.49 ± 0.62 60.83 ± 0.64
E→B 57.86 ± 0.17 55.08 ± 3.18 57.90 ± 1.83 58.74 ± 1.60 58.41 ± 0.34 57.11 ± 0.64 58.09 ± 0.20 57.76 ± 0.57 57.91 ± 0.29
E→D 56.89 ± 0.59 54.90 ± 3.92 58.79 ± 1.51 57.18 ± 1.00 56.52 ± 1.95 56.23 ± 0.19 56.77 ± 0.23 56.27 ± 0.35 56.52 ± 0.15
E→K 66.13 ± 4.09 62.78 ± 3.16 64.94 ± 3.91 66.65 ± 3.77 66.42 ± 3.70 65.50 ± 0.53 66.86 ± 3.23 66.54 ± 3.24 66.45 ± 3.23
K→B 58.76 ± 0.92 57.92 ± 1.74 59.38 ± 1.14 60.29 ± 0.80 59.71 ± 0.73 58.62 ± 1.22 59.92 ± 0.87 59.54 ± 1.00 59.95 ± 0.51
K→D 55.31 ± 0.40 57.20 ± 1.63 57.32 ± 2.49 56.26 ± 0.41 56.89 ± 1.14 55.57 ± 1.18 57.59 ± 1.95 57.06 ± 2.27 55.91 ± 0.07
K→E 63.98 ± 3.00 63.70 ± 1.30 63.84 ± 2.93 64.14 ± 2.56 64.25 ± 2.62 64.91 ± 0.44 66.10 ± 0.30 64.92 ± 0.30 64.89 ± 0.15

Ave 59.47 ± 1.61 58.97 ± 1.79 60.19 ± 1.77 60.45 ± 1.33 60.60 ± 1.55 59.88 ± 0.64 61.08 ± 0.78 60.75 ± 0.86 60.68 ± 0.59

Table 3: Mean accuracy ± standard deviation over five runs on the 12 multi-class cross-domain tasks.



[CMD-based]

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-15%

-10%

-5%

0%

5%

10%

15%

R
el

at
iv

e 
Im

pr
ov

em
en

t

B→D

CMD

CMD

CMD∗

SO

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-15%

-10%

-5%

0%

5%

10%

R
el

at
iv

e 
Im

pr
ov

em
en

t

B→K

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-10%

-5%

0%

5%

R
el

at
iv

e 
Im

pr
ov

em
en

t

D→E

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

R
el

at
iv

e 
Im

pr
ov

em
en

t

E→K

[DANN-based]

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-12%

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

R
el

at
iv

e 
Im

pr
ov

em
en

t

B→D

DANN

DANN

DANN∗

SO

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-15%

-10%

-5%

0%

5%

10%

R
el

at
iv

e 
Im

pr
ov

em
en

t

B→K

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-10%

-5%

0%

5%

R
el

at
iv

e 
Im

pr
ov

em
en

t

D→E

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Max of PS(Y = i)/PT(Y = i),∀i = 1, ,L

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

R
el

at
iv

e 
Im

pr
ov

em
en

t

E→K

Figure 5: Relative improvement over the SO baseline under different degrees of P(Y) shift.


