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Abstract

The existing supervised relation extraction
methods have achieved impressive perfor-
mance in a closed-set setting, where the rela-
tions during both training and testing remain
the same. In a more realistic open-set setting,
unknown relations may appear in the test set.
Due to the lack of supervision signals from
unknown relations, a well-performing closed-
set relation extractor can still confidently
misclassify them into known relations. In this
paper, we propose an unknown-aware training
method, regularizing the model by dynamically
synthesizing negative instances. To facilitate a
compact decision boundary, “difficult” negative
instances are necessary. Inspired by text
adversarial attacks, we adaptively apply small
but critical perturbations to original training
instances and thus synthesizing negative in-
stances that are more likely to be mistaken by
the model as known relations. Experimental
results show that this method achieves SOTA
unknown relation detection without compro-
mising the classification of known relations.

1 Introduction

Relation extraction (RE) is an important basic task
in the field of natural language processing, aiming
to extract the relation between entity pairs from
unstructured text. The extracted relation facts have
a great practical interest to various downstream
applications, such as dialog system (Madotto et al.,
2018), knowledge graph (Lin et al., 2015), web
search (Xiong et al., 2017), among others.

Many efforts have been devoted to improving
the quality of extracted relation facts (Han et al.,
2020). Conventional supervised relation extraction
is oriented to known relations with pre-specified
schema. Hence, the paradigm follows a closed-
set setting, meaning that during both training and
testing the relations remain the same. Nowadays,
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Figure 1: The decision boundary optimized only on the
known relations cannot cope with an open set setting, in
which the input may come from the relations unobserved
in training. We target at regularizing the decision
boundary by synthesizing difficult negative instances.

neural RE methods have achieved remarkable
success within this setting (Wang et al., 2016;
Wu and He, 2019); and in contrast, open relation
extraction (OpenRE) is focused on discovering
constantly emerging unknown relations. Common
practices include directly tagging the relational
phrases that link entity pairs (Zhan and Zhao,
2020), and clustering instances with the same
relation (Hu et al., 2020; Zhao et al., 2021).
However, relation extraction in real applications
follows an open-set setting, meaning that both
known and unknown relations are mixed within
testing data.* This requires that a model can
not only distinguish among the known relations,
but also filter the instances that express unknown
relations. The ability to filter these instances is also
called none-of-the-above (NOTA) detection (Gao
et al., 2019).

Unfortunately, a well-performing closed-set
model can still confidently make arbitrarily wrong
predictions when exposed to unknown test data
(Nguyen et al., 2015; Recht et al., 2019). As

*Some sentences even express no specific relations.



shown in fig. 1 (a), the decision boundary is
optimized only on the known relational data (white
points), leading to a three-way partition of the
whole space. Consequently, the unknown relational
data (black points), especially those far from the
decision boundary, will be confidently classified
into one of the known relations. By contrast, a
more compact decision boundary (as shown in fig.
1 (b)) is desirable for NOTA detection. However,
the compact decision boundary requires “difficult”
negative data (red points in fig. 1 (b)) to be used,
so strong supervision signals can be provided. It is
important to note that synthesizing such negative
data is a non-trivial task.

In this work, we propose an unknown-aware
training method, which simultaneously optimizes
known relation classification and NOTA detection.
To effectively regularize the classification, we
iteratively generate negative instances and optimize
a NOTA detection score. During the testing phase,
instances with low scores are considered as NOTA
and filtered out. The key of the method is to
synthesize “difficult” negative instances. Inspired
by text adversarial attacks, we achieve the goal
by substituting a small number of critical tokens
in original training instances. This would erase
the original relational semantics and the model
is not aware of it. By using gradient-based
token attribution and linguistic rules, key tokens
that express the target relation are found. Then,
the tokens are substituted by misleading normal
tokens that would cause the greatest increase of
NOTA detection score, thus misleading negative
instances, which are more likely to be mistaken
by the model as known relations, are synthesized.
Human evaluation shows that almost all the
synthesized negative instances do not express
any known relations. Experimental results show
that the proposed method learns more compact
decision boundary and achieve state-of-the-art
NOTA detection performance. Our codes are
publicly available at Github.†

The contributions are threefold: (1) we propose
a new unknown-aware training method for more
realistic open-set relation extraction. The method
achieves state-of-the-art NOTA detection, without
compromising the classification of known relations;
(2) the negative instances are more challenging
to the model, when compared to the mainstream

†https://github.com/XinZhao0211/OpenSetRE.

synthesis method ‡ (e.g., generative adversarial
network (GAN)-based method); (3) the compre-
hensive evaluation and analysis facilitate future
research on the pressing but underexplored task.

2 Related Works

Open-set Classification: The open-set setting
considers knowledge acquired during training
phase to be incomplete, thereby new unknown
classes can be encountered during testing. The
pioneering explorations in (Scheirer et al., 2013)
formalize the open-set classification task, and have
inspired a number of subsequent works, which
roughly fall into one of the following two groups.

The first group explores model regularization
using unknown data. Larson et al. (2019) manually
collect unknown data to train a (n + 1)-way
classifier with one additional class, where (n+1)th

class represents the unknown class. Instead of
manually collecting unknown data, Zheng et al.
(2020) generate feature vectors of unknown data
using a generative adversarial network (Goodfellow
et al., 2014). Zhan et al. (2021) use MixUp
technique (Thulasidasan et al., 2019a) to synthesize
known data into unknown data.

The second group approaches this problem
by discriminative representation learning, which
facilitates open-set classification by widening the
margin between known and unknown classes.
MSP (Hendrycks et al., 2017) is a maximum
posterior probability-based baseline and ODIN
(Liang et al., 2018) enlarges the difference between
known and unknown classes by adding temperature
scaling and perturbations to MSP. More recently,
different optimization objectives such as large
margin loss (Lin and Xu, 2019) and gaussian
mixture loss (Yan et al., 2020) are adopted to learn
more discriminative representations. Shu et al.
(2017); Xu et al. (2020); Zhang et al. (2021) also
impose gaussian assumption to data distribution to
facilitate distinct unknown data.
Open-set Relation Extraction: Open-set RE is
a pressing but underexplored task. Most of the
existing RE methods manually collect NOTA data
and adopt a (n + 1) way classifier to deal with
NOTA relations (Zhang et al., 2018; Zhu et al.,
2019; Ma et al., 2021). However, the collected
NOTA data with manual bias cannot cover all
NOTA relations and thus these methods cannot
effectively deal with open-set RE (Gao et al., 2019).

‡A quantitative analysis will be provided in Sec. 5.2.
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Figure 2: Overview of the proposed unknown-aware training method. The training loop consists of two iteration
steps: the synthesis step consists in adaptively synthesizing “difficult” instances according to the states of the model;
while in the learning step, an optimization of the dual objectives of both known relation classification and NOTA
relation detection is performed, based on the known and synthesized instances.

Our method avoids the bias and the expensive cost
of manually collecting NOTA data by automatically
synthesizing negative data. Compared with general
open-set classification methods, our method takes
relational linguistic rules into consideration and
outperforms them by a large margin.

3 Approach

We start by formulating the open-set relation
extraction task. Let K = {r1, ..., rn} denote
the set of known relations and NOTA indicates
that the instance does not express any relation in
K. Given a training set Dtrain = {(xi, yi)}Ni=1

with N positive samples, consisting of relation
instance xi with a pre-specified entity pair § and
relation yi ∈ K, we aim to learn a open-set
relation extractor M = {pθ(y|x), sθ(x)}, where
θ denote the model parameters. pθ(y|x) is the
classification probability on the known relations
(The NOTA label is excluded from pθ(y|x)).
NOTA detection score sθ(x) is used to distinguish
between known relations and NOTA. x is classified
as NOTA if sθ(x) is less than the threshold α.
Conversely, x is classified into a known relation
ŷ = argmaxy pθ(y|x).

3.1 Method Overview

We approach the problem by an unknown-aware
training method, which dynamically synthesizes
“difficult” negative instances and optimizes the dual
objectives of both known relation classification and
NOTA detection. As shown in fig. 2, the training

§We assume that the entity recognition has already been
done and an instance expresses at most one relation between
the entity pair.

loop consists of two iteration steps:
① Synthesis Step: This step aims to synthesize
“difficult” negative instances for model regulariza-
tion. We draw inspiration from text adversarial
attacks to achieve the goal. Specifically, B =
{(xi, yi)}Bi=1 represents a training batch sampled
from Dtrain. For each (x, y) ∈ B, we synthesize a
negative instance by substituting the key relational
tokens of x with misleading tokens. First, both the
attribution method and relational linguistic rules
are used to find key tokens expressing the target
relation y. Second, the misleading token wmis

i is
searched for each key token wi, along the direction
of the gradient ∇wisθ(x). By substituting wi with
wmis
i , it is expected for sθ(x) to experience its

greatest increase, so it is difficult for the model
to correctly detect the derived negative instance x′

as NOTA.
② Learning Step: This step aims to optimize the
open-set relation extractor M = {pθ(y|x), sθ(x)}.
Based on the training batch B from Dtrain, we opti-
mize pθ(y|x) to accurately classify known relations.
To effectively detect NOTA instances, we further
synthesize negative batch B′ = {(x′i,NOTA)}Bi=1

and optimize the model to widen the gap of sθ(x)
between x ∈ B and x′ ∈ B′. Consequently,
instances with low sθ(x) scores are filtered out
before being fed into pθ(y|x).

Next, we elaborate on the model structure of M
(sec. 3.2) and the technical details of the synthesis
step (sec. 3.3) and the learning step (sec. 3.4).

3.2 Open-set Relation Extractor

Instance Encoder and Classifier: Given an input
instance x = {w1, .., wn} with four reserved



special tokens [E1], [\E1], [E2], [\E2] marking the
beginning and end of the head and tail entities,
the instance encoder aims to encode the relational
semantics into a fixed-length representation h =
enc(x) ∈ Rd. We adopt BERT (Devlin et al.,
2018), a common practice, as the implementation
of the encoder. We follow Baldini Soares et al.
(2019) to concatenate the hidden states of special
tokens [E1] and [E2] as the representation of the
input instance.

w1, ..,wn = BERT(w1, .., wn) (1)

h = w[E1] ⊕w[E2], (2)

where wi,w[E1],w[E2] denotes the hidden states
of token wi, [E1], [E2], respectively. ⊕ denotes
the concatenation operator. The classification
probability on known relations pθ(·|x) can be
derived through a linear head η(·):

η(h) = Wclsh+ b (3)

pθ(·|x) = Softmax(η(h)), (4)

where Wcls ∈ Rn×d is the weight matrix transform-
ing the relation representation to the logits on n
known relations and b is the bias.
NOTA Detection Score: The goal of distinguish-
ing between known and NOTA relations requires
the modeling of the data density. However,
directly estimating log p(x) can be computationally
intractable because it requires sampling from the
entire input space. Inspired by Liu et al. (2020)
in the image understanding task, the free energy
function E(h) is theoretically proportional to the
probability density of training data. Considering
that it can be easily derived from the linear head
η(·) without additional calculation, the negative
free energy function is used to compute the NOTA
detection score as follows:

sθ(x) = −E(h) = log
n∑

j=1

eη(h)j , (5)

where η(h)j denotes the jth logit value of η(h).
The detection score has shown to be effective
in out-of-distribution detection (Liu et al., 2020).
Based on the classification probability pθ(·|x) and
NOTA detection score sθ(x), the open-set relation
extractor M works in the following way:

ŷ =

{
argmaxy pθ(y|x) S(x) > α

NOTA S(x) ≤ α,
(6)

where α is the detection threshold.

3.3 Iterative Negative Instances Synthesis
“Difficult” negative instances are the key to effective
model regularization. x = {w1, .., wn} is a
training instance with a label y. To synthesize
negative instance x′, we perturb each key token wi,
which expresses the relation y, with a misleading
token wmis

i . The substitutions are expected
to erase original relational semantics without
the model being aware of it. Based on the
attribution technique and relational linguistic rules,
a score I(wi, x, y) is developed to measure the
contribution of a token wi ∈ x to relation y as
follows:

I(wi, x, y) = a(wi, x) · t(wi, y) · dp(wi, x), (7)

where a(wi, x) denotes an attribution score
reweighted by two linguistic scores t(wi, y),
dp(wi, x). We rank all tokens according to
I(wi, x, y) in descending order and take the first
ϵ percent of tokens as key tokens to perform
substitutions. Next, we elaborate on (1) how
to calculate the attribution score a(wi, x) and
linguistic scores t(wi, y), dp(wi, x); (2) how to
select misleading tokens for substitution.
Gradient-based Token Attribution: Ideally,
when the key tokens are removed, instance x will
no longer express the original known relation y,
and the NOTA detection score sθ(x) would drop
accordingly. Therefore, the contribution of a token
wi to relational semantics can be measured by a
counterfactual:

c(wi, x) = sθ(x)− sθ(x−wi), (8)

where x−wi is the instance after removing wi.
However, to calculate the contribution of each
token in instance x, n forward passes are needed,
which is highly inefficient. Fortunately, a first-
order approximation of contribution c(wi, x) can
be obtained by calculating the dot product of word
embedding wi and the gradient of sθ(x) with
respect to wi, that is ∇wisθ(x) · wi (Feng et al.,
2018). The contribution of n tokens can thus be
computed with a single forward-backward pass.
Finally, a normalized attribution score is used, in
order to represent the contribution of each token:

a(wi, x) =
|∇wisθ(x) ·wi|∑n
j=1 |∇wjsθ(x) ·wj |

. (9)

Linguistic Rule-based Token Reweighting: As
a supplement to the attribution method, linguistic



rules that describe the pattern of relational phrases
can provide valuable prior knowledge for the
measure of tokens’ contribution. Specifically, the
following two rules are used. Rule 1: If a token
wi significantly contributes to relation y, it should
appear more frequently in the instances of y, and
rarely in the instances of other relations. By
following this rule, tf-idf statistic (Salton and
Buckley, 1987) t(wi, y)

¶ is used to reflect the
contribution of token wi to relation y (Appendix
A.1 contains additional details about the statistic).
Rule 2: Tokens that are part of the dependency path
between the entity pair usually express the relation
between the entity pair, while shorter dependency
paths are more likely to represent the relation
(ElSahar et al., 2018). Following the rule, stanza||

is used to parse the instance and the dependency
score as calculated as follows:

dp(wi, x) =

{
|x|/|T | wi ∈ T

1, otherwise,
(10)

where T denotes the set of tokens in the depen-
dency path between the entity pair. |x|, |T | denote
the number of tokens in instance x and set T ,
respectively. Eq. 10 indicates that the tokens in T
are given a higher weight, and the shorter the path,
the higher the weight.
Misleading Token Selection: Negative instances
are synthesized by substituting key tokens with
misleading tokens. Note that we have obtained the
gradient of sθ(x) with respect to each token wi in
the attribution step. Based on the gradient vectors,
a misleading token is selected from vocabulary V
for each key token wi as follows:

wmis
i = argmax

wj∈V
∇wisθ(x) ·wj . (11)

Substituting wi with wmis
i is expected to cause

the greatest increase in sθ(x), so the synthesized
negative instance is misleading to the model. To
avoid that wmis

i is also a key token of a known
relation, the top 100 tokens with the highest
tf-idf statistic of each relation are removed
from the vocabulary V , when performing the
substitution. Human evaluation results show that
almost all the synthesized negative instances do
not express any known relation. In addition, we
provide two real substitution cases in tab. 7.

¶The statistic is based on the whole training set and does
not change with a specific instance x.

||https://stanfordnlp.github.io/stanza/depparse.html

3.4 Unknown-Aware Training Objective
In this section, we introduce the unknown-aware
training objective for open-set relation extraction.
Based on the synthesized negative samples, an
optimization of the dual objectives of both known
relation classification and NOTA relation detection
is performed. Specifically, at the mth training step,
A batch of training data Bm = {(xi, yi)}Bi=1 is
sampled from Dtrain. Cross entropy loss is used for
the optimization of known relation classification:

Lcls =
1

B

B∑
i=1

(− log pθ(yi|xi)), (12)

where pθ(·|xi) is the classification probability on
the known relations (eq. 4). For each instance
x in Bm, we synthesize a negative sample x′ as
described in sec. 3.3, and finally obtain a batch
of negative samples B′

m = {(x′i,NOTA)}Bi=1. To
learn a compact decision boundary for NOTA
detection, we use the binary sigmoid loss to enlarge
the gap of detection scores sθ(·) between known
and synthesized instances as follows:

LNOTA = − 1

B

B∑
i=1

log σ(sθ(xi))

− 1

B

B∑
i=1

log(1− σ(sθ(x
′
i)))

(13)

where σ(x) = 1
1+e−x is the sigmoid function.

The overall optimization objective is as follows:

L = Lcls + β · LNOTA, (14)

where β is a hyper-parameter to balance the two
loss term.

4 Experimental Setup

4.1 Datasets
FewRel (Han et al., 2018). FewRel is a human-
annotated dataset, which contains 80 types of
relations, each with 700 instances. We take the
top 40 relations as known relations. The middle
20 relations are taken as unknown relations for
validation. And the remaining 20 relations are
unknown relations for testing. Our training set
contains 22,400 instances from the 40 known
relations. Both the validation and test set consist of
5,600 instances, of which 50% are from unknown
relations. Note that the unknown relations in the
test set and the validation set do not overlap.



Method FewRel TACRED

ACC↑ AUROC↑ FPR95↓ ACC↑ AUROC↑ FPR95↓

MSP (Hendrycks et al., 2017) 63.691.71 83.602.12 62.934.05 71.831.99 89.240.32 43.204.15
DOC (Shu et al., 2017) 63.961.00 84.460.97 59.381.92 70.080.59 89.400.25 42.831.66
ODIN (Liang et al., 2018) 66.781.57 84.472.16 55.983.03 72.372.32 89.420.30 40.833.09
MixUp (Thulasidasan et al., 2019b) 66.300.45 84.951.38 57.440.37 72.851.60 89.800.59 40.303.77
Energy (Liu et al., 2020) 71.541.05 85.531.84 46.881.50 75.150.14 90.340.12 35.302.86
Convex (Zhan et al., 2021) 71.191.51 86.230.81 46.002.67 71.551.17 90.160.58 37.403.28
SCL (Zeng et al., 2021) 65.521.48 86.711.23 58.043.24 72.702.17 90.220.67 35.803.67
Ours 74.000.56 88.730.67 41.171.37 76.971.81 91.020.59 30.272.29

Table 1: Main results of open-set relation extraction. The subscript represents the corresponding standard deviation
(e.g., 74.000.56 indicates 74.00±0.56). The results of ACC on n known relations are provided in tab.6.

TACRED (Zhang et al., 2017). TACRED is a large-
scale relation extraction dataset, which contains 41
relations and a no_relation label indicating
no defined relation exists. Similar to FewRel,
we take the top 21 relations as known relations.
The middle 10 relations are taken as unknown
relations for validation. The remaining 10 relations
and no_relation are unknown relations for
testing. We randomly sample 9,784 instances of
known relations to form the training set. Both the
validation and test set consist of 2,000 instances, of
which 50% are from unknown relations. Unknown
relations in the validation set and the test set still
do not overlap.

For the specific composition of relations in each
dataset, please refer to Appendix A.4.

4.2 Compared Methods

To evaluate the effectiveness of the proposed
method, we compare our method with mainstream
open-set classification methods, which can be
roughly grouped into the following categories:
MSP (Hendrycks et al., 2017), DOC (Shu et al.,
2017), ODIN (Liang et al., 2018), Energy (Liu
et al., 2020), and SCL (Zeng et al., 2021)
detect unknown data through a carefully designed
score function or learning a more discriminative
representation. No synthesized negative instances
are used in these methods. MixUp (Thulasidasan
et al., 2019b), and Convex (Zhan et al., 2021) use
synthesized negative instances to regularize the
model. Please refer to the appendix A.3 for a brief
introduction to these methods.

We do not compare BERT-PAIR (Gao et al.,
2019) because it is only applicable to the few-shot
setting. We use DOC (Shu et al., 2017) with a
BERT encoder as an alternative method for it.

4.3 Metrics

Following previous works (Liu et al., 2020; Zeng
et al., 2021), we treat all unknown instances as one
NOTA class and adopt three widely used metrics
for evaluation. (1) FPR95: The false positive rate
of NOTA instances when the true positive rate of
known instances is at 95%. The smaller the value,
the better. (2) AUROC: the area under the receiver
operating characteristic curve. It is a threshold-free
metric that measures how well the detection score
ranks the instances of known and NOTA relations.
(3) ACC: The classification accuracy on n known
relations and one NOTA relation, measuring the
overall performance of open-set RE.

4.4 Implementation Details

We use the AdamW as the optimizer, with a
learning rate of 2e−5 and batch size of 16 for both
datasets. Major hyperparameters are selected with
grid search according to the model performance on
a validation set. The detection threshold is set to
the value at which the true positive rate of known
instances is at 95%. The regularization weight β is
0.05 selected from {0.01, 0.05, 0.1, 0.15, 0.5}. See
the appendix A.2 for the processing of sub-tokens.
The dependency parsing is performed with stanza
1.4.2. All experiments are conducted with Python
3.8.5 and PyTorch 1.7.0, using a GeForce GTX
2080Ti with 12GB memory.

5 Results and Analysis

5.1 Main Results

In this section, we evaluate the proposed method
by comparing it with several competitive open-set
classification methods. The results are reported in
tab. 1, from which we can observe that our method



Method FewRel TACRED

ACC↑ AUROC↑ FPR95↓ ∆sθ ↓ ACC↑ AUROC↑ FPR95↓ ∆sθ ↓

Baseline 71.54 85.53 46.88 − 75.15 90.34 35.30 −
Gaussian 71.81 86.67 46.81 4.35 74.73 90.16 35.47 4.48
Gaussian† 72.93 86.66 42.69 0.02 75.17 90.38 34.73 0.03
MixUp 72.86 86.17 43.90 2.34 75.95 89.35 33.20 1.90
Real 71.75 86.52 46.08 3.55 76.10 89.92 33.67 3.91
GAN 72.11 86.77 45.69 4.01 76.06 90.46 34.30 4.10
Ours 74.00 88.73 41.17 1.73 76.97 91.02 30.27 1.36

Table 2: The unknown-aware training with various negative instance synthesis methods. The numbers in bold and
underlined indicate the best and second-best results, respectively. To quantify the difficulty of negative instances,
we calculate the average difference ∆sθ between the NOTA detection score of known and negative instances.
Obviously, the smaller the difference, the more difficult it is for the model to distinguish the two types of instances.

MSP area = 0.400 Energy area = 0.290 Ours area = 0.238

Figure 3: Decision boundary visualization. Energy
can be seen as a degenerate version of our method
when removing unknown-aware training. The vertical
axis represents the difference between the detection
threshold α and the NOTA score sθ(x), normalized to
the range of [−1, 1]. When an instance falls within
the yellow region below zero, the model classifies it as
a known relation. Conversely, when a sentence falls
within the green region above zero, the model identifies
it as NOTA.

achieves state-of-the-art NOTA detection (reflected
by FPR95 and AUROC) without compromising
the classification of known relations (reflected by
ACC). In some baseline methods (e.g., MSP, ODIN,
Energy, SCL), only instances of known relations
are used for training. Compared with them, we
explicitly synthesize the negative instances to
complete the missing supervision signals, and
the improvement in NOTA detection shows the
effectiveness of the unknown-aware training. To
intuitively show the changes of the decision
boundary, we use the method of Yu et al. (2019)
to visualize the decision boundary of the model in
the input space. As can be seen from fig. 3, a more
compact decision boundary is learned with the help
of unknown-aware training. Although methods
such as MixUp, and Convex also synthesized
negative instances, our method is still superior to

them. This may be due to the fact that our negative
instances are more difficult and thus beneficial for
an effective model regularization (we provide more
results in sec. 5.2 to support the claim).

5.2 Negative Instance Synthesis Analysis
In this section, the unknown-aware training objec-
tive is combined with the various negative instance
synthesis methods to fairly compare the perfor-
mance of these synthesis methods. The results are
shown in tab. 2. Baseline means no negative
instances are used. Gaussian takes Gaussian
noise as negative instances and Gaussian† adds
the noise to known instances. MixUp synthesizes
negative instances by convexly combining pairs of
known instances. Real means using real NOTA
instances**. GAN synthesizes negative instances by
Generative Adversarial Network (Ryu et al., 2018).
Correlation between effectiveness and difficulty.
(1) Gaussian with the largest ∆sθ performs even
worse than Baseline in TACRED, suggesting
that overly simple negative instances are almost
ineffective for model regularization. (2) Our
method synthesizes the second difficult negative
instances (reflected by ∆sθ) and achieves the
best performance (reflected by ACC, AUROC,
FPR95), which shows that the difficult negative
instances are very beneficial for effective model
regularization. (3) The difficulty of negative
instances of competitive methods (e.g., MixUp,
Real, GAN) is lower than that of Ours, which
indicates that it is non-trivial to achieve our diffi-
culty level. (4) Although Gaussian† synthesizes

**We use the data from SemEval-2010 (Hendrickx et al.,
2010). The overlap relations are manually removed.



Dataset NOTA
Known-
Original

Known-
Other

Controversial

FewRel 92 2 1 5
TACRED 90 3 0 7

Table 3: Human evaluation of our negative instances.
More than 90% of the negative instances do not express
any known relations.

the most difficult negative instances, our method
still significantly outperforms Gaussian†. One
possible reason is that overly difficult instances
may express the semantics of known relations. This
leads to the following research question.
Do our synthetic negative instances really not
express any known relations? We conduct human
evaluation to answer this question. Specifically, we
randomly select 100 synthesized negative instances
on each dataset and asked human judges whether
these instances express known or NOTA relations.
The evaluation is completed by three independent
human judges. We recruit 3 graduates in computer
science and English majors from top universities.
All of them passed a test batch. Each graduate
is paid $8 per hour. The results are shown in
tab. 3, from which we can observe that: (1)
More than 90% of the negative instances do not
express any known relations (NOTA). (2) Very few
instances remain in the original known relations
(Known-Original) or are transferred to another
known relation (Known-Other). (3) There are
also some instances that are Controversial.
Some volunteers believe that the instances express
known relations, while others believe that the
instances are NOTA. In general, our synthesis
method achieves satisfactory results, but there is
still potential for further improvement.

5.3 Ablation Study

To study the contribution of each component in
our method, we conduct ablation experiments
on the two datasets and show the results in
tab. 4. First, the attribution score measures
the impact of a token on NOTA detection of
the model. The dependency score and tf-idf
statistic reflect the matching degree between a
token and the relational linguistic rules. When
the three scores are removed, there may be some
key relational phrases that can not be correctly
identified and the performance decline accordingly.
It is worth mentioning that the model parameters
change dynamically with the training process, thus

Method ACC↑ AUROC↑ FPR95↓

w/o attribution score 73.81 88.34 41.32
w/o dependency score 73.89 88.55 41.88
w/o tfidf statistic 73.92 87.64 42.42
w/o iterative synthesis 72.61 86.90 44.71
w/o misleading tokens 71.87 86.99 46.35
Ours 74.00 88.73 41.17
w/o attribution score 75.47 90.71 35.10
w/o dependency score 76.73 90.93 30.57
w/o tfidf statistic 76.68 90.46 34.43
w/o iterative synthesis 76.75 90.57 32.77
w/o misleading tokens 75.80 90.41 33.53
Ours 76.97 91.02 30.27

Table 4: Abalation study of our method. The upper (resp.
lower) part lists the results on FewRel (resp. TACRED).
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Figure 4: FPR95 with different substitution ratio.

iteratively synthesizing negative instances is crucial
for effective regularization. When the practice
is removed, the static negative instances can not
reflect the latest state of the model, and thus the
performance degrades significantly. Finally, we
remove misleading token selection by substituting
the identified key tokens with a special token
[MASK] and the performance is seriously hurt,
which indicates that misleading tokens play an
important role in synthesizing difficult instances.

5.4 Hyper-parameter Analysis
We synthesize negative instances by substituting ϵ
percent of key tokens with misleading tokens. In
this section, we conduct experiments to study the
influence of substitution ratio ϵ on NOTA detection.
From fig. 4 we obtain the following observations.
When the substitution ratio gradually increases
from 0, the performance of NOTA detection is
also improved (Note that the smaller the value of
FPR95, the better). This means that an overly small
substitution ratio is not sufficient to remove all
relational phrases. The residual relational tokens
are detrimental to model regularization. When the
substitution ratio exceeds a certain threshold (i.e.,



0.2), a continued increase in the substitution ratio
will lead to a decline in detection performance. One
possible reason is that too high a substitution ratio
can severely damage the original sentence structure,
resulting in negative instances that differ too much
from the real NOTA instances.

6 Conclusions

In this work, we propose an unknown-aware
training method for open-set relation extraction,
which is a pressing but underexplored task. We
dynamically synthesize negative instances by the
attribution technique and relational linguistic rules
to complete the missing supervision signals. The
negative instances are more difficult than that of
other competitive methods and achieve effective
model regularization. Experimental results show
that our method achieves state-of-the-art NOTA
detection without compromising the classification
of known relations. We hope our method and
analysis can inspire future research on this task.

Limitations

We synthesize negative instances by substituting re-
lational phrases with misleading tokens. However,
the relational semantics in some instances may
be expressed implicitly. That is, there are no key
tokens that directly correspond to the target relation.
Therefore, we cannot synthesize negative instances
based on these instances. Additionally, we consider
substitution ratio ϵ as a fixed hyperparameter. It
may be a better choice to dynamically determine
ϵ based on the input instance. We leave these
limitations as our future work.
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A Appendix

A.1 Tf-idf statistic
We consider a token wi to contribute significantly
to a known relation y ∈ K if it occurs frequently
in the instances of relation y and rarely in the
instances of other relations. Tf-idf statistic
(Salton and Buckley, 1987) can well characterize
this property. Specifically, Tf-idf consists of
term frequency and inverse document frequency.
The term frequency tf(wi, y) describes how often
a token wi appears in the instances of relation y:

tf(wi, y) =
n(wi, y)∑

wj∈V n(wj , y)
, (15)

where n(wi, y) denotes the number of times the
token wi appears in the instances of relation y.
Obviously, some tokens (e.g., the stop words) have
high tf values in different relational instances.
However, they do not contribute to the relational
semantics. The inverse document frequency
describes whether the token wi appears only in
the instances of specific relations:

idf(wi) = log
|K|

|{y : n(wi, y) ̸= 0}|
, (16)
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where |K| denotes total number of known relations
and |{y : n(wi, y) ̸= 0}| denotes the number
of known relations that token wi appears in their
instances. Finally, we calculate t(wi, y) as follows:

t(wi, y) = tf(wi, y)× idf(wi). (17)

The tf-idf statistic t(wi, y) measures the con-
tribution of token wi to the relation semantics of
y. We calculate and store the statistics based on
the entire training set Dtrain before the training loop
start. During the training, the statistic of each token
in the vocabulary is fixed.

A.2 How to Deal With Sub-tokens?

BERT adopts BPE encoding to construct vocabu-
laries. While most tokens are still single tokens,
rare tokens are tokenized into sub-tokens. In
this section, we introduce how to deal with sub-
tokens when performing the substitution. First, the
tf-idf statistics and the dependency scores are
calculated at the token level and require no addi-
tional process. If a token consists of n sub-tokens,
we calculate its attribution score by summing
the scores of all its sub-tokens. In addition, the
misleading token of this token is only selected from
the tokens that also have n sub-tokens according
to argmaxwj∈Vn

∑n
k=1∇wi,k

sθ(x) · wj,k. Vn

denotes a vocabulary, in which all tokens consist of
n sub-tokens. wi,k denotes the embedding of the
kth sub-token of the token wi.

A.3 Compared Methods

To validate the effectiveness of the proposed
method, we compare our method with mainstream
open-set classification methods.
MSP (Hendrycks et al., 2017). MSP assumes
that correctly classified instances tend to have
greater maximum softmax probability than samples
of unknown classes. Therefore, the maximum
softmax probability is used as the detection score.
DOC (Shu et al., 2017). DOC builds a 1-vs-rest
layer containing m binary sigmoid classifiers for
m known classes. The maximum probability of m
binary classifiers is used as the detection score.
ODIN (Liang et al., 2018). Based on MSP, ODIN
uses temperature scaling and small perturbations
to separate the softmax score distributions between
samples of known and unknown classes.
MixUp (Thulasidasan et al., 2019b). MixUp trains
the model on convexly combined pairs of instances,
which is effective to calibrate the softmax scores.

Energy (Liu et al., 2020). Instead of maximum
softmax probability, this method uses the free
energy E(x) = − log

∑K
k=1 e

fk(x) as the detection
score of the unknown data.
Convex (Zhan et al., 2021). The method learns a
more discriminative representation by generating
synthetic outliers using inlier features.
SCL (Zeng et al., 2021). SCL proposes a
supervised contrastive learning objective, learning
a more discriminative representation for unknown
data detection.

A.4 Relations comprising the datasets
In this subsection, we present the known relations
contained in the training set, the unknown relations
included in the validation set, and the unknown
relations present in the test set, as shown in Table
5.

Relations in FewRel:
Training Set: P241, P22, P460, P4552, P140, P39, P118, P674, P361,
P1408, P410, P931, P1344, P1303, P1877, P407, P105, P3450, P991, P800,
P40, P551, P750, P106, P364, P706, P127, P150, P131, P159, P264, P102,
P974, P84, P155, P31, P740, P26, P177, P206
Validation Set: P135, P403, P1001, P59, P25, P412, P413, P136, P178,
P1346, P921, P123, P17, P1435, P306, P641, P101, P495, P466, P58
Testing Set: P57, P6, P2094, P1923, P463, P1411, P710, P176, P355,
P400, P449, P276, P156, P137, P27, P527, P175, P3373, P937, P86

Relations in FewRel:
Training Set: per:stateorprovince_of_death, org:shareholders,
org:alternate_names, per:country_of_birth, org:city_of_headquarters,
per:age, per:cities_of_residence, per:children, org:members, org:founded
per:title, org:website, per:alternate_names, org:country_of_headquarters,
per:stateorprovinces_of_residence, per:cause_of_death, per:charges
org:political_religious_affiliation, org:parents, org:dissolved, per:spouse,
Validation Set: org:subsidiaries, per:city_of_birth, per:date_of_death,
per:stateorprovince_of_birth, per:employee_of, org:member_of, per:origin,
per:date_of_birth, per:countries_of_residence, org:founded_by
Testing Set: org:stateorprovince_of_headquarters, per:country_of_death,
per:religion, per:city_of_death, org:number_of_employees_members,
per:parents, per:schools_attended, per:siblings, per:other_family,
org:top_members_employees, no_relation

Table 5: Relations comprising each dataset.

A.5 Additional Results
Classification Accuracy: One of our key claims
is that the proposed method achieves state-of-the-
art SOTA detection without compromising the
classification of known relations. In this section,
we provide an additional ACC metric, in which
only the instances of n known relations are used
to calculate the classification accuracy. The metric
exactly indicates whether NOTA detection impairs
the classification of known relations. From tab. 6
we can observe that our method is comparable to
the existing method, which supports the key claim
at the beginning of the paragraph.
Two Real Substitution Cases: To intuitively show
the effectiveness of the proposed synthesis method,



Method FewRel TACRED

MSP (Hendrycks et al., 2017) 93.130.41 94.770.98
DOC (Shu et al., 2017) 93.250.17 93.700.16
ODIN (Liang et al., 2018) 93.110.38 94.880.57
MixUp (Thulasidasan et al., 2019b) 93.190.41 94.371.28
Energy (Liu et al., 2020) 93.360.18 94.970.54
Convex (Zhan et al., 2021) 91.970.96 93.100.21
SCL (Zeng et al., 2021) 93.450.08 95.200.50
Ours 93.500.37 95.530.17

Table 6: The results of ACC on n known relations.
The subscript represents the corresponding standard
deviation (e.g., 93.500.37 indicates 93.50±0.37).

we conduct a case study based on the “Instrument”
relation from FewRel and the “Spouse” relation
from TACRED. The tokens with top-10 tf-idf
statistics and a substitution case of each relation are
shown in tab. 7, from which we can observe that:
(1) the tokens with high tf-idf statistics have a
strong semantic association with the target relation
(such as Instrument-bass, Spouse-wife). (2) By
substituting only two critical tokens in original
training instances, the target relation is completely
erased.



Relation: Instrument (musical instrument that a person plays)
Tokens with top 10 tf-idf statistics: bass, saxophone, guitar, player, trumpet, trombone, composer, drums, organ, cello
Original Training Instance: In 1961, McIntosh composed a song for [trumpet]tail legend [Howard Mcghee]head.
Synthesized Negative Instance: In 1961, McIntosh composed a verse for [Mississippi]tail legend [Howard Mcghee]head.

Relation: Spouse (a husband or wife, considered in relation to their partner.)
Tokens with top 10 tf-idf statistics: wife, husband, married, survived, died, grandchildren, children, heidi, sons, robert
Original Training Instance: “[his]head family was at his bedside”, his wife, [Barbara Washburn]tail, said Thursday.
Synthesized Negative Instance: “[his]head friend was at his bedside”, his captain, [Barbara Washburn]tail, said Thursday.

Table 7: Case study of the proposed negative samples synthesis method. The relation semantics between the given
entity pair is completely erased by substituting only 2 tokens (tokens in red).


