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Abstract

Recently, Few-shot Named Entity Recognition
has received wide attention with the growing
need for NER models to learn new classes with
minimized annotation costs. However, one
common yet understudied situation is to trans-
fer a model trained with coarse-grained classes
to recognize fine-grained classes, such as
separating a product category into sub-classes.
We find that existing few-shot NER solutions
are not suitable for such a situation since they
do not consider the sub-class discrimination
during coarse training and various granularity
of new classes during few-shot learning. In
this work, we introduce the Coarse-to-fine Few-
shot NER (C2FNER) task and propose an
effective solution. Specifically, during coarse
training, we propose a cluster-based prototype
margin loss to learn group-wise discriminative
representations, so as to benefit fine-grained
learning. Targeting various granularity of
new classes, we separate the coarse classes
into extra-fine clusters and propose a novel
prototype retrieval and bootstrapping algorithm
to retrieve representative clusters for each fine
class. We then adopt a mixture prototype
loss to efficiently learn the representations
of fine classes. We conduct experiments on
both in-domain and cross-domain C2FNER
settings with various target granularity, and the
proposed method shows superior performance
over the baseline methods.

1 Introduction

Named Entity Recognition (NER), aiming at
recognizing named entities such as person names,
locations, and organizations from unstructured text,
is a fundamental task for NLP applications (Mintz
et al., 2009; Li et al., 2013; Rajpurkar et al., 2016).
With the emerging of knowledge from various
domains and the emerging of new entity types, it
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Figure 1: A schematic of the Coarse-to-fine Few-shot
NER (C2FNER) task. The model trained with coarse
annotations is expected to fast adapt to recognizing fine-
grained classes with few samples.

is difficult to manually annotate a large-scale high-
quality dataset for each new application scenario
(Ding et al., 2021; Yang and Katiyar, 2020). Under
this circumstance, Few-shot NER has become a
crucial task, which studies NER systems that can
fast adapt to new domains or unseen entity types
with minimized annotation efforts. Recently, an
increasing number of researchers have focused on
Few-shot NER and made contributions to this task
(Yang and Katiyar, 2020; Huang et al., 2021; Cui
et al., 2021; Ma et al., 2022; Tong et al., 2021).

Unfortunately, previous works on few-shot NER
typically assume the new classes are of the same
or similar level of granularity to the known classes
(Ding et al., 2021; Yang and Katiyar, 2020). In
practice, a common situation is that the model
needs to extend to more fine-grained classes from
existing coarse-grained classes (Yang et al., 2021;
Ni et al., 2021). Such a situation typically
occurs during the lifespan of the model when the
application requires separating some sub-classes
from the current classes and yet when the model
is pre-trained without any knowledge of the sub-
classes. For example, a product recognizer initially
built with a "Computer" class may need to separate
into sub-classes such as "Notebook computer"
and "Tablet computer" as the requirement updates.



Naturally, relabeling a high-quality dataset each
time is much too costly to be an option (Bukchin
et al., 2021).

In this work, we introduce the Coarse-to-
fine Few-shot NER (C2FNER) task. We find
that existing few-shot NER solutions are less
suitable for C2FNER for two reasons: (i) When
training on the coarse-grained classes, most of
the existing methods aim at maximizing the inter-
class boundaries yet neglect the intra-class variance
(Bukchin et al., 2021; Chen et al., 2022b), which
might result in reducing separability of sub-classes,
thus hindering few-shot fine-grained learning. (ii)
As the granularity of new classes is unknown
during coarse training, it is challenging to provide
a solution that can benefit various granularity of
new classes. This requires specific designs for
cross-granularity few-shot learning, which is not
considered in general few-shot NER methods.

In this work, we propose a novel and effective
solution for C2FNER. Firstly, in order to promote
the intra-class variance in a way that best
benefits cross-granularity learning, we propose a
cluster-based prototype margin loss that improves
group-wise discrimination in the coarse classes.
Specifically, we first perform clustering on the
representations of coarse-grained model to obtain
entity clusters. Then, we minimize the distance of
each entity with its prototype while maximizing
its distance with negative prototypes from other
coarse classes. Second, in order to benefit various
granularity of new classes, we separate each coarse
class into extra-fine clusters and propose a novel
prototype retrieval algorithm to retrieve repre-
sentative prototypes (i.e., representative clusters)
for each fine-grained classes. By initialize each
fine-grained class with multiple prototypes, we
then adopt a mixture prototype loss for efficiently
learning the representations of fine classes with
only few samples. We also bootstrap the prototypes
of each fine class with a kNN-based method during
few-shot training, so as to make full use of the
coarse model.

As the first attempt on C2FNER, we evaluate the
proposed method and baselines on various practical
C2FNER settings, including (1) the in-domain
coarse-to-fine setting where the fine-grained classes
are strictly included in and inferior to each coarse-
grained class; and (2) the cross-domain coarse-
to-fine setting where the fine classes might not
strictly included in the coarse classes. Additionally,

we evaluate the methods with various granularity
of new classes. Experimental results show the
superiority of the proposed method over baseline
methods on multiple C2FNER settings. 1

To sum up the contribution of this work:

• In this work, we introduce the Coarse-to-fine
Few-shot NER (C2FNER) task, a practical
yet understudied task that is hard to solve with
existing few-shot solutions.

• We propose a novel and effective method for
C2FNER, which not only provide adaptive
representations for fine classes during coarse-
grained training, but also benefit various
granularity of new classes through novel
mixture prototypes retrieving and learning.

• We provide comprehensive benchmarks for
C2FNER on both in-domain cross-domain
settings and for various granularity of new
classes.

2 Problem setup

In this work, we introduce the Coarse-to-fine Few-
shot NER task (C2FNER). Formally, we denote by
Ycoarse = {c1, . . . , cR} a set of R coarse classes
and let Yfine = {c1, . . . , cF } be a set of fine
classes. In our experiments, we explore both the
situations when the fine classes are strictly included
or not in the coarse classes. When training on the
coarse classes, we assume an adequate number
of N training instances Scoarse

train = {(Xj , Yj)}Nj=1

annotated (only) with Ycoarse. When tested
on the fine classes, only a K-shot training set
Sfine
train = {(Xj , Yj)}NK

j=1 and the test set Sfine
test =

{(Xj , Yj)}Mj=1 is provided, where K-shot means
each fine class is annotated with only K entities.
Our goal is to train a model M on the coarse
training set Scoarse

train and then fine-tune it on the
K-shot fine training set Sfine

train to obtain maximal
performance on the fine test set Sfine

test .

3 Methodology

As shown in Figure 2, in this work, we propose
a novel and effective method for C2FNER, which
improves the performance from both the coarse and
fine training phases: (1) During coarse training,
we propose a cluster-based prototype margin loss
to learn group-wise discriminative representations

1Our code is publicly available at https://github.
com/rtmaww/C2FNER.
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that benefit fine-grained learning. (2) During fine
training, we improve performance for various fine
granularity by retrieving representative clusters
for each fine class with a prototype retrieval and
bootstrapping algorithm and then training with a
mixture prototype loss.

3.1 Coarse-grained Representation Learning:
Cluster-based Prototype Margin Loss

The goal of coarse training is to provide a fine-
friendly representation for future fine-grained
adaptation when ensuring the coarse performance.
However, general supervised learning or few-shot
learning methods aims at maximizing the inter-
class margin of coarse classes without considering
the sub-classes included in the coarse classes. Such
maximization of inter-class variance will harm the
intra-class variance, leading to less separable sub-
classes and unfriendly representations for coarse-
to-fine transfer.

In this work, we propose a cluster-based
prototype margin loss for coarse training, which
increases the intra-class variance of each coarse
class during training as well as learning a good
semantic structure of features. Specifically, seman-
tically similar entities are pulled together while
being separable from other entities. Moreover,
the discrimination of coarse classes should be
retained, thus not hindering the performance of
the coarse classes. Therefore, we use a prototype
for representing a group of semantically similar
entities and achieve the above goal with a prototype
margin loss. Formally, we first assign the entities
in each coarse class cr to a set of groups Gcr =
{gi}NG

i=1,Gcr ⊂ G by performing clustering on
the representations of all entities from cr. We
denote M(ei) as the assigned group (or cluster)
of entity ei (i.e., ei ∈ M(ei)), where M(·) is a
mapping function. Then, we obtain the prototype
representation pk of each group k by:

pk =
1

|gk|
∑
ei∈gk

h(ei) (1)

where h(ei) is the default representation of ei from
the pre-trained PLM encoder. Then, the prototype
margin loss for ei is calculated by:

Lpm,i = max(0,m+ d(h(ei),pM(ei))

− min
pn∈G\Gyi

d(h(ei),pn))

(2)

where m is a pre-defined margin. pM(ei) is the
assigned prototype of ei. pn is a negative prototype
selected from other coarse classes. d(·) denotes
a distance function, which we use the Euclidean
distance in our implementation. To optimize the
prototype margin loss, each entity is forced to get
closer to its prototype as well as keep a distance
from prototypes from other classes. Consequently,
semantically similar entities are pulled together and
are discriminative to other groups of entities, thus
contributing to friendly representations for coarse-
to-fine transfer learning.

As the prototype margin loss is calculated
only for entity representations, we also train a
classifier with the Cross-Entropy Loss for token
classification (including the none-entity class):

Lce = − 1

N

N∑
i

log
exp(W⊤

c h(xi) + bc)∑|Ycoarse|
j=1 exp(W⊤

j h(xi) + bj)
(3)

where Wc and bc is the weight and bias of class c.
The final training loss can be written as:

Lcoarse = Lce +

Ne∑
i

Lpm,i (4)

where Ne is the entity number in the training set.

3.2 Fast Adaptation for Various
Fine-Granularities

One challenge of adapting a coarse model to the
fine classes is the unknown granularity of target
fine classes. As the model trained on the coarse
classes has no prior information about the fine
classes, one intuitive solution is to provide adaptive
representations that is suitable for various fine
granularities. Also, it is essential to make full
use of the coarse model and few-shot samples for
fast adaptation during the few-shot training phase,
which is unexplored neither in previous few-shot
methods nor coarse-to-fine few-shot methods.

In this work, we solve the above problem by
learning extra-fine prototypes on the coarse classes
and performing multi-prototype learning on the fine
classes.

3.2.1 Over-clustering for Unknown Fine
Granularity

In order to learn adaptive representations for
unknown granularity of fine classes, we propose to
divide the entities in the coarse classes into extra-
fine clusters through over-clustering and represent
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Figure 2: An overview of the proposed method. During coarse-grained training, we propose a Cluster-based
Prototype Margin Loss to learn group-wise discriminative representations that benefit fine-grained learning. During
fine-grained few-shot learning, we propose a Prototype Retrieval algorithm to retrieve representative clusters for
each fine class, and then leverage Mixture Prototype Learning to improve fine-grained representations.

each extra-fine cluster with a prototype. As a result,
after coarse training, we have:

G =

R⋃
r=1

Gcr , |G| ≫ |Ycoarse|

P = {pi}|G|i=1

(5)

By assuming that |G| > |Yfine| for most of the fine
granularity, the trained representations are adaptive
to various fine granularity as long as we perform
appropriate training with few-shot samples.

3.2.2 Prototype Retrieval with Few Samples
As the coarse-trained representations are divided
into |G| extra-fine clusters, for arbitrary granularity
of fine classes that |Yfine| < |G|, we propose
to retrieve representative clusters for each fine
class from the coarse-trained representations. This
idea is achieved by a prototype retrieval algorithm.
Specifically, for a given fine-grained class cf ∈
|Yfine| with K sampled entities {(efi , y

f
i )}Ki=1

(where efi denotes the i-th sample of class cf ), we
retrieve one prototype for each sample efi by:

P̂ (efi ) = arg min
t∈{1..|P|}

d(h(ei),pt) (6)

where P̂ (efi ) is the index of the retrieved prototype,
i.e., the retrieved cluster. As the retrieved
prototypes of different samples might conflict, it is
essential to ensure that each prototype is assigned
to only one class. Therefore, for each prototype pj ,
we assign it to a possible fine class by:

Y (pj) =

None, if ∀efi , P̂ (efi ) ̸= j

argmin
cf

d(h(efi ),pj), else

(7)

The detailed process of the Prototype Retrieval
Algorithm can be found in Alg.1.

Prototype Bootstrapping In order to make the
fullest use of the pre-trained representations and
discover more representative clusters for each fine
class, we also propose to bootstrap the prototypes
of each class. To ensure appropriate prototype
assignment, we borrow the idea of K-Nearest-
Neighbor, i.e., one prototype is most likely to
belong to class cf if most of its nearest neighbors
belong to class cf . Therefore, we bootstrap the
prototypes after every M epochs by:

ηk(cf | pi) =

|P|∑
j=1

1[Y (pj) = cf ,pj ∈ topK(pi)]

Ŷ (pi) = argmax
cf

ηk(cf | pi)

Y (pi) =

{
Ŷ (pi), if ηk(Ŷ (pi) | pi) > T

None, else

(8)

where 1[·] is an indicator function and topK(·) is
obtained by selecting the K most nearest neighbor
of pi by calculating d(pi,pl),pl ∈ P . Also,
as shown in the equation, we assign a prototype
to class cf only when the number of prototypes
belonging to cf is larger than a threshold T , in order
to keep the quality of the prototype assignment.

3.2.3 Mixture Prototype Learning
By retrieving prototypes from coarse representa-
tions, we initialize the few-shot training of fine
classes by regarding each fine class cf ∈ Y{⟩\⌉
as a mixture distribution including multiple sub-
clusters represented by multiple prototypes {pi |
pi ∈ P(cf )}. In order for faster adaptation, we
make full use of the retrieved prototypes with a



Algorithm 1 Prototype Retrieval
Require: The set of prototypes of the coarse model P ,

the few-shot sample set of the fine-grained classes
{{(e1i , y1

i )}Ki=1, . . . , {(e
|Cfine|
i , y

|Cfine|
i )}Ki=1}.

1: for each prototype pi ∈ P do
2: // Initialize prototype-class assignments
3: Y (pi)← None
4: // Initialize the nearest sample lists
5: NS[i]← ∅
6: end for
7: // Retrieve the nearest prototype for each sample
8: for each class cf ∈ Yfine do
9: for each entity efi ∈ {e

f
1 , . . . , e

f
K} do

10: P̂ (efi )← (Eq.6)
11: NS[P̂ (efi )]← NS[P̂ (efi )] ∪ {e

f
i }

12: end for
13: end for
14: // Prototype-class assignment with conflict
15: for each prototype pi ∈ P do
16: if NS[i] ̸= ∅ then
17: Y (pi)← argmin

cf
{d(h(efj ),pi) | efi ∈ NS[i]}

18: end if
19: end for
20: return {Y (p1), . . . , Y (p|P|)}

Mixture Prototype Loss. Specifically, for each
entity (ei, yi), we estimate its probability to yi by:

p(yi|ei) =
exp(−

∑
pj∈P(ci)

d(h(ei),pj))

|Yfine|∑
k

exp(−
∑

pj∈P(ck)
d(h(ei),pj))

(9)

Then, the loss is computed as the negative log-
likelihood Lmixpt = −log p(yi|ei) of the true
class yi. In this way, the representations of
multiple clusters that belongs to each fine class
are forced to gather together and draw closer to the
representations of few-shot samples, while become
more discriminative to the representations from
other clusters. To further adapt the representations,
we add an additional prototype distance loss for the
prototype learning:

Lpt =

|Yfine|∑
k

∑
pi,pj∈P(ck)

i ̸=j

d(pi,pj) (10)

As the mixture prototype loss and prototype
distance loss are only calculated for entity
representations, we also calculate the Cross-
Entropy Loss as in Eq.3. Finally, the training loss
can be written as:

Lfine = Lce + Lmixpt + Lpt (11)

Coarse

Datasets # Class # Train # Test

In-domain

Few-NERD (coarse) 8 65.8k 17.9k

Cross-domain

CoNLL 2003 4 14.0k 3.4k
OntoNotes 5.0 18 60.0k 8.4k

Fine
Datasets # Class # Train # Test

Few-NERD (fine) 66 - 28.2k
Few-NERD (Medium-fine) 39 - 28.2k

Table 1: Dataset details. # Class denotes the number of
entity types in each dataset.

4 Experiments

In C2FNER, the models are first trained on a coarse-
grained dataset and then adapted to a fine-grained
dataset. To comprehensively evaluate the C2FNER
task, we conduct experiments with multiple choice
of coarse- and fine-grained settings.
Two fine granularity To evaluate the model with
unknown fine granularity, we construct datasets
of two fine granularity based on the Few-NERD
dataset (Ding et al., 2021): (a) Fine: containing the
original 66 fine-grained classes; (b) Medium-fine:
we combine similar classes in the 66 classes and
construct a new granularity including 38 classes,
referred to as the Medium-fine dataset. 2

Multiple coarse-grained datasets We adopt three
widely-used datasets for coarse-grained training,
corresponding to two C2FNER settings: (a) In-
domain: We construct a coarse-grained dataset
based on the Few-NERD dataset with the 8 coarse
classes hierarchical to the 66 fine-grained classes.
(b) Cross-domain: We adopt the CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) and
OntoNotes 5.0 (Weischedel et al., 2013) datasets
from the newswire domain as the coarse-grained
datasets for the cross-domain C2FNER setting.

4.1 Few-shot Experiment Settings

For different coarse- and fine-grained choices,
we follow the evaluation settings from (Simple,
container) and evaluate the methods with all-way
1-shot and 5-shot support set and the standard test
set. For both settings, we sampled 3 different few-
shot training sets. For each sampled set, we repeat
experiments 3 times. Each reported result is the
average result of 3×3 experiments.
Evaluation Metric General NER researches adopt
the entity-level micro-f1 score for evaluating the
models. However, due to the long-tailed class

2The details of the dataset construction are in Appendix
A.3.



Methods
Medium-fine (39 entity classes) Fine (66 entity classes)

1-shot 5-shot 1-shot 5-shot

(micro-f1) (macro-f1) (micro-f1) (macro-f1) (micro-f1) (macro-f1) (micro-f1) (macro-f1)

BERT 17.36 ± 3.00 18.09 ± 1.71 37.78 ± 2.86 36.08 ± 2.26 13.22 ± 1.29 14.41 ± 1.66 37.45 ± 2.48 34.38 ± 1.66
ProtoNet 4.98 ± 1.34 5.11 ± 1.77 21.04 ± 4.77 19.28 ± 4.89 5.39 ± 2.25 4.77 ± 1.60 20.72 ± 4.47 19.95 ± 1.61
SCL 18.52 ± 4.48 19.41 ± 3.26 40.87 ± 3.36 38.85 ± 2.42 16.45 ± 3.22 17.43 ± 1.96 39.20 ± 2.26 38.08 ± 1.20
NNShot 13.76 ± 2.28 11.38 ± 1.58 31.72 ± 2.58 30.23 ± 1.23 10.12 ± 2.79 9.08 ± 1.20 28.96 ± 01.79 29.52 ± 0.83
StructShot 15.06 ± 2.40 12.80 ± 1.80 33.53 ± 2.76 31.96 ± 1.33 11.53 ± 2.77 10.33 ± 1.17 30.83 ± 1.82 31.47 ± 0.90
CONTaiNER 12.96 ± 3.67 12.66 ± 2.77 29.45 ± 2.43 25.23 ± 0.83 13.56 ± 2.78 12.21 ± 1.33 24.91 ± 1.46 20.74 ± 1.15
FCDC 17.80 ± 5.36 16.65 ± 3.51 37.74 ± 2.07 36.51 ± 2.18 15.25 ± 3.03 14.12 ± 0.88 38.14 ± 1.25 36.04 ± 1.01
Ours 28.19 ± 3.89 30.80 ± 2.70 42.88 ± 3.88 42.03 ± 1.66 25.89 ± 3.86 27.72 ± 1.07 40.27 ± 3.03 41.62 ± 1.19

Table 2: In-domain 1-shot and 5-shot C2FNER results of the baseline methods and the proposed method. Each
reported result is the average result of 3× 3 repeated experiments and the number after ± is the standard deviation.
We report both the micro- and macro-f1 results for a more comprehensive evaluation on the long-tailed test set.

Methods
Coarse domain: OntoNotes 5.0 Coarse domain: CoNLL 2003

Medium-fine Fine Medium-fine Fine

(micro-f1) (macro-f1) (micro-f1) (macro-f1) (micro-f1) (macro-f1) (micro-f1) (macro-f1)

BERT 34.11 ± 3.15 28.86 ± 2.02 33.73 ± 2.68 31.81 ± 1.31 27.59± 2.65 24.57± 1.45 24.81± 6.03 23.74±5.62
ProtoNet 20.50 ± 4.02 18.82 ± 3.06 19.84 ± 3.81 19.92 ± 3.40 16.13± 5.37 16.69± 2.98 16.09± 2.60 16.27±3.23
SCL 34.28 ± 2.27 29.83 ± 1.77 30.19 ± 1.31 29.45 ± 0.87 26.25± 2.06 23.34± 1.36 25.04± 1.52 24.11±1.31
NNShot 25.11 ± 1.60 21.56 ± 1.00 15.20 ± 2.32 14.83 ± 1.38 18.49± 1.68 16.91± 1.03 18.38± 1.45 18.04±0.82
StructShot 26.48 ± 1.67 23.21 ± 0.97 18.27 ± 2.39 17.53 ± 1.51 19.41± 1.73 17.79± 1.08 19.27± 1.50 19.10±0.83
CONTaiNER 28.74 ± 3.96 24.32 ± 1.75 23.37 ± 1.75 21.25 ± 1.27 15.05± 2.01 15.38± 1.47 14.24± 0.75 15.01±0.62
FCDC 33.06 ± 3.93 28.56 ± 2.64 28.89 ± 2.21 28.44 ± 1.08 29.32± 2.29 26.21± 1.78 27.11± 2.25 26.91±1.17
Ours 36.50 ± 4.08 33.65 ± 2.47 35.84 ± 2.73 35.42 ± 0.69 32.83± 2.11 31.87± 1.56 32.08± 3.00 33.68±0.54

Table 3: Cross-domain 5-shot C2FNER results of the baseline methods and the proposed method. Each reported
result is the average result of 3× 3 repeated experiments and the number after ± is the standard deviation.

distribution of the fine-grained test set, evaluating
with the micro-f1 score less reflect the performance
on the small classes. Therefore, we report both
the macro-f1 and micro-f1 scores for a more
comprehensive evaluation.

4.2 Baselines
We evaluate the C2FNER task with various
baseline methods: 3.
General few-shot methods: We include directly
fine-tuning on BERT (Devlin et al., 2019) with
a token classifier as a general baseline, referred
to as BERT. Besides, the Prototypical Network
(Snell et al., 2017), denoted as ProtoNet, is a
typical few-shot learning method. We also include
SCL (Khosla et al., 2020; Gunel et al., 2020), the
supervised contrastive learning method that has
shown great advantages in few-shot NLP tasks.
Few-shot NER methods: NNShot and StructShot
(Yang and Katiyar, 2020) is two few-shot NER
methods based on token-level nearest neighbor
classification. CONTaiNER (Das et al., 2022) is
an up-to-date few-shot NER method that leverages
a novel contrastive learning technique.

3The implementation details are in Appendix A.1

Coarse-to-fine method: FCDC (An et al., 2022)
is a recently published research on coarse-to-
fine category discovery for text classification.
Specifically, it proposes a hierarchical weighted
self-contrastive network for learning a fine-friendly
representation during the coarse training.

4.3 Main Results

Table 2 and Table 3 show the results of the
proposed method and the baseline methods on the
C2FNER task on the in-domain and cross-domain
settings, respectively. From the results, we can
observe that: (1) The few-shot NER methods,
although effective on previous few-shot NER
settings, are less advantageous on the C2FNER
task. This might be because these methods are
mainly designed for generalizing to classes of the
same or similar level of granularity, thus are less
beneficial for coarse-to-fine generalization. (2)
Surprisingly, the FCDC method, which is proposed
for discovering fine-grained classes with coarse-
grained annotations on text classification, is less
effective on C2FNER. This might be because
the hierarchical self-contrastive method assumes
different granularities exist in different layers of



Methods
Medium-fine (39 entity classes) Fine (66 entity classes)

1-shot 5-shot 1-shot 5-shot

(micro-f1) (macro-f1) (micro-f1) (macro-f1) (micro-f1) (macro-f1) (micro-f1) (macro-f1)

Ours 28.19 ± 3.89 30.80 ± 2.70 42.88 ± 3.88 42.03 ± 1.66 25.89 ± 3.86 27.72 ± 1.07 40.27 ± 3.03 41.62 ± 1.19
w/o CPML 20.28 ± 1.18 22.15 ± 1.12 40.06 ± 2.62 39.71 ± 1.85 19.11 ± 2.95 19.09 ± 0.81 37.39 ± 2.55 38.96 ± 0.75
w/o PR&MPL 23.57 ± 5.72 24.90 ± 3.30 42.30 ± 2.66 39.74 ± 1.15 20.01 ± 3.20 22.35 ± 1.70 39.20 ± 2.27 38.01 ± 1.33
w/o CPML w/o PR&MPL 17.36 ± 3.00 18.09 ± 1.71 37.78 ± 2.86 36.08 ± 2.26 13.22 ± 1.29 14.41 ± 1.66 37.45 ± 2.48 34.38 ± 1.66

Table 4: Ablation study on the proposed method on in-domain C2FNER setting. CPML denotes the Cluster-based
Prototype Margin Loss for coarse-grained training. PR&MPL denotes the Prototype Retrieval algorithm and Mixture
Prototype Learning for fine-grained few-shot learning.

BERT, while in token-level tasks like NER, the
token-level representations are naturally more fine-
grained than the sentence-level representations. (3)
The proposed method shows significant advantages
on both in-domain and cross-domain C2FNER
settings. On the in-domain setting, the proposed
method achieves up to 12.67% micro-f1 score
and 13.31% macro-f1 score improvement on 1-
shot learning over the baseline methods. On
the cross-domain setting, all the methods show
decreased results due to the data distribution shift
across domains, among which the proposed method
consistently outperforms all baseline methods. (4)
It is also worth noting that the proposed method
shows more advantages regarding the macro-f1
results, indicating that it might better benefit the
long-tailed classes. We further illustrate this
phenomenon in Sec. 4.6.

4.4 Ablation Study
We conduct an ablation study on the proposed
method, as shown in Tab.4. w/o CPML means we
didn’t adopt the Cluster-based Prototype Margin
Loss during coarse training, and directly performed
clustering on BERT and then used Prototype
Retrieval and Mixture Prototype Learning. w/o
PR&MPL means we didn’t adopt the Prototype
Retrieval and Mixture Prototype Learning and w/o
CPML w/o PR&MPL is the pure BERT model
without any of our methods. We can see that
both CPML and PR&MPL do contribute to the
model improvement. The CPML is able to learn
appropriate representations for fine classes. The
PR&MPL is more effective regarding the macro-f1
results, and more interesting, it can improve the
results limitedly when performing without CPML,
since it is hard to retrieve appropriate clusters for
fine classes without CPML.

4.5 Effect of the Cluster Number
To train the model with Cluster-based Prototype
Margin Loss, we first perform clustering on the
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Figure 3: Effect of different cluster numbers.

coarse classes with K-means clustering. In our
implementation, we set the cluster number in each
class to 50. Figure 3 shows the effect of different
cluster numbers on the Fine dataset. We can see
that the performance grows as the cluster number
increases. This might be because the proposed
prototype retrieval and mixture prototype learning
method are based on regarding each fine class
as a mixture distribution, which is ensured by
performing over-clustering on the coarse classes.
Additionally, when the cluster number is larger
than 50, the performance is relatively stable,
showing the robustness of the prototype retrieval
and mixture prototype learning method towards
different over-clustered representations.

Class name # Entity Methods
BERT SCL Ours

event-election 131 14.04 16.73 21.35
building-restaurant 173 17.34 18.02 24.88
product-train 213 27.36 34.63 37.33
building-hotel 222 27.23 31.27 41.50
building-airport 245 57.12 59.46 69.90
other-educationdegree 248 35.68 39.61 49.10
product-ship 256 40.50 42.44 49.96

Table 5: F1-score on the long-tailed entity classes. #
Entity denotes the entity number in the test set. Each
result is the average result of 3×3 repeated experiments.

4.6 Benefiting Long-tailed Classes

As observed in Table 2 and Table 3, the proposed
method is more advantageous regarding the macro-
f1 scores, which might be related with the
performance of long-tailed classes. In Table 5, we
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Figure 4: T-SNE visualization of NNShot (left), BERT (Medium), and the proposed method (right). We further
annotate the retrieved prototypes (⋆) of each fine class through Prototype Retrieval. The visualization of more
baselines can be seen in Appendix A.2.

show the results on the smallest classes of different
methods. We can see that the proposed method
indeed outperforms the baseline methods by a large
margin on these long-tailed classes, which might
credit to the over-clustering and Prototype Retrieval
method that learn and align small clusters to their
corresponding fine classes.

4.7 Visualization of Coarse Representations
In figure 4, we visualize the representations of
different models after coarse training. We can
observe that both the NNShot and BERT show less
separable representations after coarse training due
to disregard for the structure of sub-classes. By
training with Cluster-based Prototype Margin Loss,
we obtain group-discriminative representations
that benefit coarse-to-fine learning. Furthermore,
we visualize the prototypes (⋆) retrieved through
Prototype Retrieval of each fine class. We can see
that the Prototype Retrieval algorithm can retrieve
various representative clusters for each fine class
with a certain accuracy.

5 Related Works

5.1 Coarse and Fine Learning
The coarse and fine learning problem has been
studied in many works. Early works (Ristin et al.,
2015; Guo et al., 2018; Taherkhani et al., 2019;
Hsieh et al., 2019; Robinson et al., 2020) on coarse-
to-fine learning often assume the knowledge of
fine classes and even a number of samples of fine
classes is available during coarse training, which
is less practical to meet the continually-updating
user requirements. Recently, several works have
explored similar scenarios with C2FNER (Bukchin
et al., 2021; An et al., 2022; Yang et al., 2021)

and proposed effective solutions. These methods
typically focus on learning adaptive representations
during coarse training by leveraging contrastive
learning (Bukchin et al., 2021; An et al., 2022),
meta-learning (Yang et al., 2021) or cluster-based
(Ni et al., 2022) methods. In this work, we propose
a new solution to learn good representations during
coarse training. Moreover, we are the first to
consider different target granularity and provide
solutions to improve the few-shot learning part.

5.2 Few-shot Learning for NER

Recently, many works have focused on few-shot
NER. Yang and Katiyar (2020) improved the
prototypical network with a nearest-neighbor-based
learning method. Huang et al. (2021) conducted
intensive experiments on different methods for few-
shot NER. Tong et al. (2021) also leverages a
cluster-based method for few-shot NER, yet it only
focuses on clustering the none-entity class. More
recently, (Das et al., 2022) leverages contrastive
learning for few-shot NER. Many works (Cui et al.,
2021; Ma et al., 2022; Chen et al., 2022a,c; Huang
et al., 2022b) explore better leveraging the pre-
trained models with prompt learning or generation-
based methods. Generally, these studies only
consider few-shot generalization across classes of
similar granularity, and are less effective when
facing coarse-to-fine situations. To the best of
our knowledge, this work is the first to consider
and improve coarse-to-fine transfer learning for the
NER task.

5.3 Relation with Entity Typing

The proposed C2FNER task is partially related
to Entity Typing (Choi et al., 2018; Ma et al.,



2016; Del Corro et al., 2015), a task that classifies
recognized entities into fine entity types. Recently,
several works on few-shot entity typing have
achieve great performance on various benchmarks
(Huang et al., 2022a; Ding et al., 2022; Eberts
et al., 2020). In C2FNER, we aim to adapt a NER
model trained on coarse classes to recognize finer
classes. When the fine classes are strictly included
in the coarse classes, we can simply train a few-
shot fine-grained entity typing model to accomplish
the coarse-to-fine transfer. However, such practice
is restricted to the in-domain setting and cannot
be applied to more general situations when the
fine classes are not strictly included in the coarse
classes. Also, the practice requires the deployment
cost of an extra model. Therefore, the proposed
method to adapt the NER model is more efficient
and more generally applicable.

6 Conclusion

In this work, we introduce the Coarse-to-fine Few-
shot NER (C2FNER) task, which considers the
practical situation when the models are required
to be updated to more fine-grained classes. To
solve the C2FNER task, we propose a novel
method, which learns fine-friendly representations
via a Cluster-based Prototype Margin Loss, and
further benefits few-shot learning for various
fine granularity via a Prototype Retrieval and
Mixture Prototype Learning method. We provide
a comprehensive benchmark for C2FNER with
different settings, where the proposed method
consistently outperforms all baseline methods.

7 Limitations

There are several limitations of this work: (1) In
this work, we leverage a cluster-based method
for improving the representations during coarse
training. Regarding the clustering, we simply
perform a K-means process to obtain cluster
assignment. The problem is, the cluster assignment
with one-time clustering, especially based on
the fine-tuned BERT model, might be incorrect.
Training with incorrect cluster assignments will
pull together the instances from different fine
classes, thus hindering the performance. Therefore,
the proposed method can be further improved
by: (a) leveraging a more robust learning method
that can tolerate incorrect cluster assignments;
(b) Improving the clustering process to obtain
more accurate cluster assignments. (2) In this

work, we aim to extend existing few-shot NER
to a practical yet understudied setting. However,
we limit the setting to the few-shot coarse-to-
fine transfer learning setting as in previous works
(Bukchin et al., 2021; An et al., 2022; Yang et al.,
2021; Ni et al., 2022). In practice, there might be
more complex situations that require to be explored
in further works.
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Figure 5: T-SNE visualization of FCDC (left), SCL (Medium), and the proposed method (right). We further
annotate the retrieved prototypes (⋆) of each fine class through Prototype Retrieval.

A Appendix

A.1 Implementation Details

For the proposed method and all baselines, we
implemented based on the BERT-base-cased pre-
trained model4. We trained the models for 3 epochs
during coarse training and trained the models
for 20 and 30 epochs during 5-shot and 1-shot,
respectively. For our method and BERT, we set
batchsize=32 and learning_rate=5e-5 on coarse
training and batchsize=4 and learning_rate=1e-4 on
few-shot learning. For other methods, we used their
default parameters. For all methods, we choose the
last model after few-shot training for evaluation.
All our experiments are conducted on NVIDIA
GeForce RTX 3090.

For our method, we performed clustering using
the K-means clustering (Hartigan and Wong,
1979) 5 on the BERT model trained after the first
epoch, and then re-initialized and trained on the
coarse classes for 3 epochs. We set the cluster
number of each coarse class to 50 for both in-
domain and cross-domain settings. We set the
margin m = 2 for the in-domain setting and
m = 0.2 for the cross-domain setting. For the
prototype boosting, we set T = 3,K = 6.

A.2 Visualization of More Baselines

In Figure 5, we show the t-SNE visualization
of more competitive baselines. As we can
see, all baseline models show less separable
representations after coarse training due to
disregard for the structure of sub-classes, while
the proposed model can achieve quite fine-friendly

4https://github.com/huggingface/transformers
5https://scikit-learn.org/stable/modules/generated/

sklearn.cluster.KMeans.html

representations.

A.3 Details of the Medium-fine dataset
In order to evaluate different methods with various
fine granularity, we constructed a Medium-fine
dataset (39 entity classes) based on the original
Fine dataset (66 entity classes) by merging similar
classes into new classes. The details of the merged
classes can be found in 6. For other details of the
Fine dataset, please refer to (Ding et al., 2021).



New class name # Entity Included classes
art-music/film/

1826 art-music, art-film, art-broadcastprogram
broadcastprogram

art-other 416 art-other

art-writtenart/painting 814 art-writtenart,art-painting

building-airport/other 2211 building-airport,building-other

building-hospital 261 building-hospital

building-hotel/restaurant 395 building-hotel,building-restaurant

building-theater/
901 building-theater,building-sportsfacility,building-library

sportsfacility/library
event-attack/battle/war/

834 event-attack/battle/war/militaryconflict
militaryconflict

event-disaster/other 882 event-disaster,event-other

event-election/protest 268 event-election,event-protest

event-sportsevent 1140 event-sportsevent

location-GPE 15349 location-GPE

location-bodiesofwater/park 1255 location-bodiesofwater,location-park

location-island/mountain 1006 location-island,location-mountain

location-road/railway/
3009 location-road/railway/highway/transit,location-other

highway/transit/other
organization-education 1635 organization-education

organization-media/newspaper 950 organization-media/newspaper

organization-politicalparty/
1992 organization-politicalparty,organization-government/governmentagency

government/governmentagency
organization-religion/other 3782 organization-religion,organization-other

organization-showorganization/
3521 organization-showorganization,organization-company

company
organization-sportsteam/sportsleague 2571 organization-sportsteam,organization-sportsleague

other-astronomything 497 other-astronomything

other-award 710 other-award

other-chemicalthing/medical/
3032 other-chemicalthing,other-medical,other-biologything,other-disease

biologything/disease
other-currency 576 other-currency

other-educationaldegree 248 other-educationaldegree

other-god 468 other-god

other-language 632 other-language

other-law 367 other-law

other-livingthing 630 other-livingthing

person-actor/director 1573 person-actor,person-director

person-artist/author/scholar 3227 person-artist/author,person-scholar

person-athlete 2193 person-athlete

person-politician 2122 person-politician

person-soldier/other 7149 person-soldier,person-other

product-food/other 1525 product-food,product-other

product-ship/car/airplane/train 1513 product-ship,product-car,product-airplane,product-train

product-software/game 980 product-software,product-game

product-weapon 428 product-weapon

Table 6: Details of the merged classes. # Entity denotes the entity number in the test set.


